login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128708
Let j(n) be the Jacobsthal function, A048669. Then a(n) is the number of times that the gap j(n) appears between consecutive numbers <= n+1 and coprime to n.
2
1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 2, 1, 1, 2, 8, 1, 3, 1, 2, 2, 1, 1, 4, 5, 1, 9, 2, 1, 2, 1, 16, 2, 1, 2, 6, 1, 1, 2, 4, 1, 2, 1, 2, 6, 1, 1, 8, 7, 5, 2, 2, 1, 9, 2, 4, 2, 1, 1, 4, 1, 1, 6, 32, 2, 2, 1, 2, 2, 2, 1, 12, 1, 1, 10, 2, 2, 2, 1, 8, 27, 1, 1, 4, 2, 1, 2, 4, 1, 6, 2, 2, 2, 1, 2, 16, 1, 7, 6, 10
OFFSET
1,4
COMMENTS
Differs from A087653 starting at n=35. For prime n and e>0, a(n^e)=n^(e-1). The closely-related sequence A128707 satisfies the inequality a(n)*A128707(n) <= n-1, with equality for prime n. If m is the squarefree kernel of n (A007947), then a(n)/a(m) = n/m.
EXAMPLE
The numbers coprime to 15 are 1,2,4,7,8,11,13,14,16,17,19,22,... Observe that the differences are periodic: 1,2,3,1,3,2,1,2,1,2,3,... The maximum value is 3, which occurs twice in the first period. Hence a(15)=2.
MATHEMATICA
JacobsthalCount[n_] := Module[{g, d, mx}, g=Select[Range[n+1], GCD[n, # ]==1&]; d=Rest[g]-Most[g]; mx=Max@@d; Count[d, mx]]; Table[JacobsthalCount[n], {n, 100}]
CROSSREFS
Sequence in context: A003557 A073752 A346487 * A087653 A295666 A355003
KEYWORD
nonn
AUTHOR
T. D. Noe, Mar 24 2007
STATUS
approved