login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

O.g.f.: A(x) = 1/(1-1*x/(1-3*x/(1-5*x/(1-7*x/(1-...-(2n-1)*x/(1-...)))))) (continued fraction).
6

%I #22 Feb 08 2022 20:19:09

%S 1,1,4,31,364,5746,113944,2719291,75843724,2420160286,86941080904,

%T 3471911602006,152562875644984,7315129181611876,380045172886143664,

%U 21266347877729314771,1275148311699896290444,81563275661324271278566

%N O.g.f.: A(x) = 1/(1-1*x/(1-3*x/(1-5*x/(1-7*x/(1-...-(2n-1)*x/(1-...)))))) (continued fraction).

%C Hankel transform is A168440. - _Paul Barry_, Nov 25 2009

%F a(n) = Sum_{k=0..n} (-1)^k*2^(n-k)*A053979(n,k). - _Philippe Deléham_, Mar 24 2007

%F a(n) = Sum_{k=0..n} A094344(n,k)*3^(n-k). - _Philippe Deléham_, Mar 27 2007

%F G.f.: 1/(1-x-3x^2/(1-8x-35x^2/(1-16x-99x^2/(1-24x-195x^2/(1-32x-323x^2/(1-... (continued fraction). - _Paul Barry_, Nov 25 2009

%F a(n) = top left term of M^n, n > 0; M = the infinite square production matrix:

%F 1, 3, 0, 0, ...

%F 1, 3, 5, 0, ...

%F 1, 3, 5, 7, ...

%F ...

%F Also, a(n+1) = sum of top row terms of M^n. Example: top row of M^3 = (31, 93, 135, 105, 0, 0, 0, ...), where a(3) = 31 and a(4) = 364 = (31 + 93 + 135 + 105). - Gary W. Adamson, Jul 14 2011

%F G.f.: 1/T(0) where T(k) = 1 - x*(4*k+1)/(1 - x*(4*k+3)/T(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Mar 19 2013

%F G.f.: G(0), where G(k) = 1 - x*(2*k+1)/(x*(2*k+1) - 1/G(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Aug 05 2013

%F a(n) ~ 2^(2*n - 1/2) * (n-1)! / Pi. - _Vaclav Kotesovec_, Aug 24 2017

%e G.f.: A(x) = 1 + x + 4x^2 + 31x^3 + 364x^4 + 5746x^5 + ...;

%e A(x) = 1/(1 - x*(1 + 3x + 24x^2 + 297x^3 + 4896x^4 + ...));

%e A(x) = 1/(1 - x/(1 - 3x*(1 + 5x + 60x^2 + 1035x^3 + 22500x^4 + ...)));

%e A(x) = 1/(1 - x/(1 - 3x/(1 - 5x*(1 + 7x + 112x^2 + 2485x^3 + ...)))).

%t nmax = 20; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[(2*Range[nmax + 1]-1)*x]], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Aug 24 2017 *)

%o (PARI) {a(n)=local(CF=1+x*O(x^n));for(k=0,n,CF=1/(1-(2*n-2*k+1)*x*CF));polcoeff(CF,n,x)}

%K nonn

%O 0,3

%A _Paul D. Hanna_, Mar 23 2007