login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369734
Number of solutions to 1^2*k_1 + 2^2*k_2 + ... + n^2*k_n = 1, where k_i are from {-1,0,1}, i=1..n.
2
0, 1, 1, 1, 1, 3, 8, 17, 35, 79, 177, 409, 995, 2475, 6336, 16078, 41401, 107304, 279550, 736032, 1950000, 5199850, 13950852, 37576658, 101670863, 276228026, 753114256, 2060995699, 5658663542, 15583477334, 43039552072, 119179072495, 330836308272, 920537185436
OFFSET
0,6
FORMULA
a(n) = [x^1] Product_{k=1..n} (x^(k^2) + 1 + 1/x^(k^2)).
MATHEMATICA
Table[Coefficient[Product[(x^(k^2) + 1 + 1/x^(k^2)), {k, 1, n}], x, 1], {n, 0, 32}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 30 2024
STATUS
approved