The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A106691 Expansion of g.f. (1+x-2*x^2+x^3+x^4)/((1-x)^2*(1+x)^2*(1+2*x)^2). 1
 1, -3, 8, -17, 36, -71, 140, -269, 516, -979, 1852, -3481, 6516, -12127, 22444, -41253, 75236, -135915, 242716, -427185, 737876, -1242743, 2019468, -3106877, 4349636, -4971011, 2485500, 9942071, -49710284, 159072881, -437450388, 1113510059, -2704238684, 6362914533, -14634703396 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (-4,-2,8,7,-4,-4). FORMULA From G. C. Greubel, Sep 09 2021: (Start) a(n) = (1/54)*(3*n +4 -27*(-1)^n*(n+4) +(-2)^(n+1)*(3*n-79)). E.g.f.: (1/54)*((4 +3*x)*exp(x) -27*(4 -x)*exp(-x) + 2*(79 +6*x)*exp(-2*x)). (End) MATHEMATICA CoefficientList[Series[(1+x-2x^2+x^3+x^4)/((1-x)^2(1+x)^2(1+2x)^2), {x, 0, 40}], x] (* oe *) LinearRecurrence[{-4, -2, 8, 7, -4, -4}, {1, -3, 8, -17, 36, -71}, 40] (* Harvey P. Dale, Dec 21 2015 *) PROG Floretion Algebra Multiplication Program, FAMP Code: 2jbasekrokseq[ - .25'i - .25i' + 'ii' + .25'jk' + .25'kj'], RokType: Y[sqa.Findk()] = Y[sqa.Findk()] - p (internal program code) (MAGMA) [(1/54)*(3*n +4 -27*(-1)^n*(n+4) +(-2)^(n+1)*(3*n-79)): n in [0..40]]; // G. C. Greubel, Sep 09 2021 (Sage) [(1/54)*(3*n +4 -27*(-1)^n*(n+4) +(-2)^(n+1)*(3*n-79)) for n in (0..40)] # G. C. Greubel, Sep 09 2021 CROSSREFS Cf. A002697. Sequence in context: A052996 A112523 A147419 * A140176 A238496 A097391 Adjacent sequences:  A106688 A106689 A106690 * A106692 A106693 A106694 KEYWORD sign,easy AUTHOR Creighton Dement, May 13 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 12:59 EST 2021. Contains 349406 sequences. (Running on oeis4.)