login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A106693 3 symbols taken seven at a time symmetrically. 0
1, 1, 3, 2, 3, 1, 1, 1, 1, 3, 2, 3, 1, 1, 3, 3, 2, 1, 2, 3, 3, 2, 2, 1, 3, 1, 2, 2, 3, 3, 2, 1, 2, 3, 3, 1, 1, 3, 2, 3, 1, 1, 1, 1, 3, 2, 3, 1, 1, 1, 1, 3, 2, 3, 1, 1, 1, 1, 3, 2, 3, 1, 1, 3, 3, 2, 1, 2, 3, 3, 2, 2, 1, 3, 1, 2, 2, 3, 3, 2, 1, 2, 3, 3, 1, 1, 3, 2, 3, 1, 1, 1, 1, 3, 2, 3, 1, 1, 3, 3, 2, 1, 2, 3, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

This substitution gives a dragon like tile: aa=p[6]; bb = aa /. 1 -> {-1, N[Sqrt[3]]}/2 /. 2 -> {-1, -N[Sqrt[3]]}/2 /. 3 -> {1, 0}; ListPlot[FoldList[Plus, {0, 0}, bb], PlotJoined -> False, PlotRange -> All, Axes -> False];

LINKS

Table of n, a(n) for n=0..104.

FORMULA

1->{1, 1, 3, 2, 3, 1, 1}, 2->{2, 2, 1, 3, 1, 2, 2}, 3->{3, 3, 2, 1, 2, 3, 3}

MATHEMATICA

s[1] = {1, 1, 3, 2, 3, 1, 1}; s[2] = {2, 2, 1, 3, 1, 2, 2}; s[3] = {3, 3, 2, 1, 2, 3, 3}; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]] aa = p[3]

CROSSREFS

Sequence in context: A191390 A309698 A085747 * A107335 A200223 A236228

Adjacent sequences:  A106690 A106691 A106692 * A106694 A106695 A106696

KEYWORD

nonn,uned

AUTHOR

Roger L. Bagula, May 13 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 22 23:14 EST 2020. Contains 332157 sequences. (Running on oeis4.)