%I
%S 1,1,3,2,3,1,1,1,1,3,2,3,1,1,3,3,2,1,2,3,3,2,2,1,3,1,2,2,3,3,2,1,2,3,
%T 3,1,1,3,2,3,1,1,1,1,3,2,3,1,1,1,1,3,2,3,1,1,1,1,3,2,3,1,1,3,3,2,1,2,
%U 3,3,2,2,1,3,1,2,2,3,3,2,1,2,3,3,1,1,3,2,3,1,1,1,1,3,2,3,1,1,3,3,2,1,2,3,3
%N 3 symbols taken seven at a time symmetrically.
%C This substitution gives a dragon like tile: aa=p[6]; bb = aa /. 1 > {1, N[Sqrt[3]]}/2 /. 2 > {1, N[Sqrt[3]]}/2 /. 3 > {1, 0}; ListPlot[FoldList[Plus, {0, 0}, bb], PlotJoined > False, PlotRange > All, Axes > False];
%F 1>{1, 1, 3, 2, 3, 1, 1}, 2>{2, 2, 1, 3, 1, 2, 2}, 3>{3, 3, 2, 1, 2, 3, 3}
%t s[1] = {1, 1, 3, 2, 3, 1, 1}; s[2] = {2, 2, 1, 3, 1, 2, 2}; s[3] = {3, 3, 2, 1, 2, 3, 3}; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n  1]] aa = p[3]
%K nonn,uned
%O 0,3
%A _Roger L. Bagula_, May 13 2005
