Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Mar 15 2024 14:22:10
%S 1,-3,8,-17,36,-71,140,-269,516,-979,1852,-3481,6516,-12127,22444,
%T -41253,75236,-135915,242716,-427185,737876,-1242743,2019468,-3106877,
%U 4349636,-4971011,2485500,9942071,-49710284,159072881,-437450388,1113510059,-2704238684,6362914533,-14634703396
%N Expansion of g.f. (1+x-2*x^2+x^3+x^4)/((1-x)^2*(1+x)^2*(1+2*x)^2).
%C Floretion Algebra Multiplication Program, FAMP Code: 2jbasekrokseq[ - .25'i - .25i' + 'ii' + .25'jk' + .25'kj'], RokType: Y[sqa.Findk()] = Y[sqa.Findk()] - p (internal program code)
%H G. C. Greubel, <a href="/A106691/b106691.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (-4,-2,8,7,-4,-4).
%F From _G. C. Greubel_, Sep 09 2021: (Start)
%F a(n) = (1/54)*(3*n +4 -27*(-1)^n*(n+4) +(-2)^(n+1)*(3*n-79)).
%F E.g.f.: (1/54)*((4 +3*x)*exp(x) -27*(4 -x)*exp(-x) + 2*(79 +6*x)*exp(-2*x)). (End)
%t CoefficientList[Series[(1+x-2x^2+x^3+x^4)/((1-x)^2(1+x)^2(1+2x)^2),{x,0,40}],x] (* or *) LinearRecurrence[{-4,-2,8,7,-4,-4},{1,-3,8,-17,36,-71},40] (* _Harvey P. Dale_, Dec 21 2015 *)
%o (Magma) [(1/54)*(3*n +4 -27*(-1)^n*(n+4) +(-2)^(n+1)*(3*n-79)): n in [0..40]]; // _G. C. Greubel_, Sep 09 2021
%o (SageMath) [(1/54)*(3*n +4 -27*(-1)^n*(n+4) +(-2)^(n+1)*(3*n-79)) for n in (0..40)] # _G. C. Greubel_, Sep 09 2021
%Y Cf. A002697.
%K sign,easy
%O 0,2
%A _Creighton Dement_, May 13 2005