|
|
A010809
|
|
21st powers: a(n) = n^21.
|
|
8
|
|
|
0, 1, 2097152, 10460353203, 4398046511104, 476837158203125, 21936950640377856, 558545864083284007, 9223372036854775808, 109418989131512359209, 1000000000000000000000, 7400249944258160101211
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index to divisibility sequences
Index entries for linear recurrences with constant coefficients, signature (22, -231, 1540, -7315, 26334, -74613, 170544, -319770, 497420, -646646, 705432, -646646, 497420, -319770, 170544, -74613, 26334, -7315, 1540, -231, 22, -1).
|
|
FORMULA
|
Completely multiplicative sequence with a(p) = p^21 for prime p. Multiplicative sequence with a(p^e) = p^(21e). - Jaroslav Krizek, Nov 01 2009
From Amiram Eldar, Oct 09 2020: (Start)
Dirichlet g.f.: zeta(s-21).
Sum_{n>=1} 1/a(n) = zeta(21) (A293904).
Sum_{n>=1} (-1)^(n+1)/a(n) = 1048575*zeta(21)/1048576. (End)
|
|
MATHEMATICA
|
Table[n^21, {n, 0, 20}] (* Vladimir Joseph Stephan Orlovsky, Mar 18 2010 *)
|
|
PROG
|
(MAGMA) [n^21: n in [0..15]]; // Vincenzo Librandi, Jun 19 2011
(PARI) a(n)=n^21 \\ Felix Fröhlich, Jul 16 2014
|
|
CROSSREFS
|
Cf. A293904.
Sequence in context: A017623 A195252 A017706 * A323659 A017705 A013969
Adjacent sequences: A010806 A010807 A010808 * A010810 A010811 A010812
|
|
KEYWORD
|
nonn,mult,easy
|
|
AUTHOR
|
N. J. A. Sloane.
|
|
STATUS
|
approved
|
|
|
|