|
|
A010810
|
|
22nd powers: a(n) = n^22.
|
|
5
|
|
|
0, 1, 4194304, 31381059609, 17592186044416, 2384185791015625, 131621703842267136, 3909821048582988049, 73786976294838206464, 984770902183611232881, 10000000000000000000000, 81402749386839761113321
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (23, -253, 1771, -8855, 33649, -100947, 245157, -490314, 817190, -1144066, 1352078, -1352078, 1144066, -817190, 490314, -245157, 100947, -33649, 8855, -1771, 253, -23, 1).
|
|
FORMULA
|
Totally multiplicative sequence with a(p) = p^22 for prime p. Multiplicative sequence with a(p^e) = p^(22e). - Jaroslav Krizek, Nov 01 2009
From Amiram Eldar, Oct 09 2020: (Start)
Dirichlet g.f.: zeta(s-22).
Sum_{n>=1} 1/a(n) = zeta(22) = 155366*Pi^22/13447856940643125.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2097151*zeta(22)/2097152 = 3324754717*Pi^22/287777551824322560000. (End)
|
|
MATHEMATICA
|
Table[n^20, {n, 0, 22}] (* Amiram Eldar, Oct 09 2020 *)
|
|
PROG
|
(MAGMA) [n^22: n in [0..15]]; // Vincenzo Librandi, Jun 19 2011
(PARI) a(n) = n^22; \\ Michel Marcus, Feb 27 2018
|
|
CROSSREFS
|
Cf. A010807, A013678, A010809.
Sequence in context: A016811 A016907 A017708 * A137486 A016967 A017039
Adjacent sequences: A010807 A010808 A010809 * A010811 A010812 A010813
|
|
KEYWORD
|
nonn,mult,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|