login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A215272 a(n) = a(n-1)*a(n-2) with a(0)=1, a(1)=9. 9
1, 9, 9, 81, 729, 59049, 43046721, 2541865828329, 109418989131512359209, 278128389443693511257285776231761, 30432527221704537086371993251530170531786747066637049 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

From Peter Bala, Nov 01 2013: (Start)

Let phi = 1/2*(1 + sqrt(5)) denote the golden ratio A001622. This sequence is the simple continued fraction expansion of the constant c := 8*sum {n = 1..inf} 1/9^floor(n*phi) (= 64*sum {n = 1..inf} floor(n/phi)/9^n) = 0.90109 74122 99938 29901 ... = 1/(1 + 1/(9 + 1/(9 + 1/(81 + 1/(729 + 1/(59049 + 1/(43046721 + ...))))))). The constant c is known to be transcendental (see Adams and Davison 1977). Cf. A014565.

Furthermore, for k = 0,1,2,... if we define the real number X(k) = sum {n >= 1} 1/9^(n*Fibonacci(k) + Fibonacci(k+1)*floor(n*phi)) then the real number X(k+1)/X(k) has the simple continued fraction expansion [0; a(k+1), a(k+2), a(k+3), ...] (apply Bowman 1988, Corollary 1). (End)

LINKS

Bruno Berselli, Table of n, a(n) for n = 0..15

W. W. Adams and J. L. Davison, A remarkable class of continued fractions, Proc. Amer. Math. Soc. 65 (1977), 194-198.

P. G. Anderson, T. C. Brown, P. J.-S. Shiue, A simple proof of a remarkable continued fraction identity, Proc. Amer. Math. Soc. 123 (1995), 2005-2009.

D. Bowman, A new generalization of Davison's theorem, Fib. Quart. Volume 26 (1988), 40-45

FORMULA

a(n) = 9^Fibonacci(n).

MAPLE

a:= n-> 9^(<<1|1>, <1|0>>^n)[1, 2]:

seq(a(n), n=0..12);  # Alois P. Heinz, Jun 17 2014

MATHEMATICA

RecurrenceTable[{a[0] == 1, a[1] == 9, a[n] == a[n - 1] a[n - 2]}, a[n], {n, 0, 15}]

PROG

(MAGMA) [9^Fibonacci(n): n in [0..10]];

(PARI) a(n) = 9^fibonacci(n); \\ Jinyuan Wang, Apr 06 2019

CROSSREFS

Cf. A000045, A000301, A010098-A010100, A214706, A214887, A215270, A215271, A014565.

Column k=9 of A244003.

Sequence in context: A112296 A038299 A323210 * A165427 A050683 A210095

Adjacent sequences:  A215269 A215270 A215271 * A215273 A215274 A215275

KEYWORD

nonn,easy

AUTHOR

Bruno Berselli, Aug 07 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 15 00:36 EDT 2020. Contains 335762 sequences. (Running on oeis4.)