login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215270
a(n) = a(n-1)*a(n-2) with a(0)=1, a(1)=6.
9
1, 6, 6, 36, 216, 7776, 1679616, 13060694016, 21936950640377856, 286511799958070431838109696, 6285195213566005335561053533150026217291776, 1800782593726645086383198950649858141454002621435149880441896326660096
OFFSET
0,2
COMMENTS
From Peter Bala, Nov 01 2013: (Start)
Let phi = 1/2*(1 + sqrt(5)) denote the golden ratio A001622. This sequence is the simple continued fraction expansion of the constant c := 5*sum {n = 1..inf} 1/6^floor(n*phi) (= 25*sum {n = 1..inf} floor(n/phi)/6^n) = 0.86045 01626 86090 61353 ... = 1/(1 + 1/(6 + 1/(6 + 1/(36 + 1/(216 + 1/(7776 + 1/(1679616 + ...))))))). The constant c is known to be transcendental (see Adams and Davison 1977). Cf. A014565.
Furthermore, for k = 0,1,2,... if we define the real number X(k) = sum {n >= 1} 1/6^(n*Fibonacci(k) + Fibonacci(k+1)*floor(n*phi)) then the real number X(k+1)/X(k) has the simple continued fraction expansion [0; a(k+1), a(k+2), a(k+3), ...] (apply Bowman 1988, Corollary 1). (End)
LINKS
W. W. Adams and J. L. Davison, A remarkable class of continued fractions, Proc. Amer. Math. Soc. 65 (1977), 194-198.
P. G. Anderson, T. C. Brown, P. J.-S. Shiue, A simple proof of a remarkable continued fraction identity, Proc. Amer. Math. Soc. 123 (1995), 2005-2009.
D. Bowman, A new generalization of Davison's theorem, Fib. Quart. Volume 26 (1988), 40-45
FORMULA
a(n) = 6^Fibonacci(n).
MAPLE
a:= n-> 6^(<<1|1>, <1|0>>^n)[1, 2]:
seq(a(n), n=0..12); # Alois P. Heinz, Jun 17 2014
MATHEMATICA
RecurrenceTable[{a[0] == 1, a[1] == 6, a[n] == a[n - 1] a[n - 2]}, a[n], {n, 0, 15}]
PROG
(Magma) [6^Fibonacci(n): n in [0..11]];
CROSSREFS
Cf. A166470 (same recurrence with initial values 2, 6). A014565.
Column k=6 of A244003.
Sequence in context: A217978 A257626 A222340 * A203057 A165424 A244957
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Aug 07 2012
STATUS
approved