login
A166470
a(n) = 2^F(n+1)*3^F(n), where F(n) is the n-th Fibonacci number, A000045(n).
7
2, 6, 12, 72, 864, 62208, 53747712, 3343537668096, 179707499645975396352, 600858794305667322270155425185792, 107978831564966913814384922944738457859243070439030784
OFFSET
0,1
LINKS
FORMULA
a(n) = A000301(n+1)*A010098(n).
For n > 1, a(n) = a(n-1)*a(n-2).
For m > 1, n > 1, A166469(A002110(m)*(a(n)^k)/12) = k*Fibonacci(m+n).
A166469(a(n)) = Fibonacci(n+2) + 1 = A001611(n+2).
a(n) = 2 * A174666(n+1). - Alois P. Heinz, Sep 16 2022
a(n) = 2^(Fibonacci(n+1) + c*Fibonacci(n)), with c=log_2(3). Cf. A000301 (c=1) & A010098 (c=2). - Andrea Pinos, Sep 29 2022
MATHEMATICA
3^First[#] 2^Last[#]&/@Partition[Fibonacci[Range[0, 12]], 2, 1] (* Harvey P. Dale, Aug 20 2012 *)
PROG
(PARI) a(n)=2^fibonacci(n+1)*3^fibonacci(n) \\ Charles R Greathouse IV, Sep 19 2022
(Magma) [2^Fibonacci(n+1)*3^Fibonacci(n): n in [0..14]]; // G. C. Greubel, Jul 29 2024
(SageMath) [2^fibonacci(n+1)*3^fibonacci(n) for n in range(15)] # G. C. Greubel, Jul 29 2024
CROSSREFS
Subsequence of A025610 and hence of A003586 and A025487.
Sequence in context: A178846 A173843 A107763 * A144144 A226178 A129085
KEYWORD
nonn,easy
AUTHOR
Matthew Vandermast, Nov 05 2009
EXTENSIONS
Typo corrected by Matthew Vandermast, Nov 07 2009
STATUS
approved