The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A166473 a(n) = 2^L(n+1) * 3^L(n)/12, where L(n) is the n-th Lucas number (A000032(n)). 3
 2, 36, 864, 373248, 3869835264, 17332899271409664, 804905577934332296851095552, 167416167663978753511691999938432197602574336 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS For m>1, A166469(A002110(m)*a(n)) = L(m+n). A166469(a(n)) = L(n+2) - 2 = A014739(n). LINKS G. C. Greubel, Table of n, a(n) for n = 1..14 FORMULA a(n) = A166471(n)/12. For n>1, a(n) = 12*a(n-1) * a(n-2). MATHEMATICA Table[(2^LucasL[n+1] 3^LucasL[n])/12, {n, 10}] (* Harvey P. Dale, Aug 17 2011 *) PROG (PARI) lucas(n) = fibonacci(n+1) + fibonacci(n-1); vector(10, n, 2^(lucas(n+1)-2)*3^(lucas(n)-1) ) \\ G. C. Greubel, Jul 22 2019 (Magma) [2^(Lucas(n+1)-2)*3^(Lucas(n)-1): n in [1..10]]; // G. C. Greubel, Jul 22 2019 (Sage) [2^(lucas_number2(n+1, 1, -1)-2)*3^(lucas_number2(n, 1, -1)-1) for n in (1..10)] # G. C. Greubel, Jul 22 2019 (GAP) List([1..10], n-> 2^(Lucas(1, -1, n+1)[2]-2)*3^(Lucas(1, -1, n)[2]-1)); # G. C. Greubel, Jul 22 2019 CROSSREFS Subsequence of A003586, A025487. Sequence in context: A336714 A093530 A001626 * A279575 A009539 A009554 Adjacent sequences: A166470 A166471 A166472 * A166474 A166475 A166476 KEYWORD nonn AUTHOR Matthew Vandermast, Nov 05 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 27 18:44 EDT 2023. Contains 362982 sequences. (Running on oeis4.)