login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001626 Number of 3-line Latin rectangles.
(Formerly M2158 N0860)
4
0, 0, 2, 36, 840, 29680, 1429920, 90318144, 7237943552, 717442928640, 86171602072320, 12331048749268480, 2072725870491859968, 404352831489304049664, 90605920564322676531200, 23110943021722435879157760, 6657484407493222296916131840 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

REFERENCES

S. M. Jacob, The enumeration of the Latin rectangle of depth three..., Proc. London Math. Soc., 31 (1928), 329-336.

S. M. Kerawala, The enumeration of the Latin rectangle of depth three by means of a difference equation, Bull. Calcutta Math. Soc., 33 (1941), 119-127.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=1..17.

S. M. Jacob, The enumeration of the Latin rectangle of depth three..., Proc. London Math. Soc., 31 (1928), 329-336.

S. M. Kerawala, The enumeration of the Latin rectangle of depth three by means of a difference equation, Bull. Calcutta Math. Soc., 33 (1941), 119-127. [Annotated scanned copy]

Index entries for sequences related to Latin squares and rectangles

FORMULA

a(1) = 0, a(n) = A000186(n) + 2*(n-1)*a(n-1), n > 1. - Sean A. Irvine, Sep 25 2015

CROSSREFS

Cf. A000186.

Sequence in context: A112036 A336714 A093530 * A166473 A279575 A009539

Adjacent sequences:  A001623 A001624 A001625 * A001627 A001628 A001629

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Sean A. Irvine, Sep 25 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 15:00 EDT 2022. Contains 356936 sequences. (Running on oeis4.)