Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Jan 24 2019 16:15:02
%S 1,1,0,1,1,0,1,2,1,0,1,3,2,1,0,1,4,3,4,1,0,1,5,4,9,8,1,0,1,6,5,16,27,
%T 32,1,0,1,7,6,25,64,243,256,1,0,1,8,7,36,125,1024,6561,8192,1,0,1,9,8,
%U 49,216,3125,65536,1594323,2097152,1,0
%N A(n,k) = k^Fibonacci(n); square array A(n,k), n>=0, k>=0, read by antidiagonals.
%H Alois P. Heinz, <a href="/A244003/b244003.txt">Antidiagonals n = 0..20, flattened</a>
%F A(n,k) = k^A000045(n).
%F A(0,k) = 1, A(1,k) = k, A(n,k) = A(n-1,k) * A(n-2,k) for n>=2.
%e Square array A(n,k) begins:
%e 1, 1, 1, 1, 1, 1, 1, ...
%e 0, 1, 2, 3, 4, 5, 6, ...
%e 0, 1, 2, 3, 4, 5, 6, ...
%e 0, 1, 4, 9, 16, 25, 36, ...
%e 0, 1, 8, 27, 64, 125, 216, ...
%e 0, 1, 32, 243, 1024, 3125, 7776, ...
%e 0, 1, 256, 6561, 65536, 390625, 1679616, ...
%p A:= (n, k)-> k^(<<1|1>, <1|0>>^n)[1, 2]:
%p seq(seq(A(n, d-n), n=0..d), d=0..12);
%t A[0, 0] = 1; A[n_, k_] := k^Fibonacci[n]; Table[A[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* _Jean-François Alcover_, Nov 11 2015 *)
%Y Columns k=0-10 give: A000007, A000012, A000301, A010098, A010099, A214706, A215270, A214887, A215271, A215272, A010100.
%Y Rows n=0, 1+2, 3-8 give: A000012, A001477, A000290, A000578, A000584, A001016, A010801, A010809.
%Y Main diagonal gives: A152915.
%Y Cf. A000045, A103323.
%K nonn,tabl
%O 0,8
%A _Alois P. Heinz_, Jun 17 2014