Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Jun 18 2014 04:20:56
%S 1,5,109,22265,45300601,865092893645,151339416167296549,
%T 240067372975786948895105,3437874756032842865408439504241,
%U 443629315988897178081546025182658298645,515464811455682924553846499988261249729439172189
%N a(n) = Sum_{k=0..n} binomial(n,k) * (1 + 3^k)^k.
%F a(n) = Sum_{k=0..n} binomial(n,k) * (1 + 3^k)^(n-k) * 3^(k^2).
%F O.g.f.: Sum_{n>=0} (1 + 3^n)^n * x^n / (1-x)^(n+1).
%F O.g.f.: Sum_{n>=0} 3^(n^2) * x^n / (1 - (1+3^n)*x)^(n+1).
%F E.g.f.: exp(x) * Sum_{n>=0} (1 + 3^n)^n * x^n / n!.
%F a(n) ~ 3^(n^2). - _Vaclav Kotesovec_, Jun 18 2014
%e O.g.f.: A(x) = 1 + 5*x + 109*x^2 + 22265*x^3 + 45300601*x^4 +...
%e where the g.f. may be expressed by the series identity:
%e A(x) = 1/(1-x) + 4*x/(1-x)^2 + 10^2*x^2/(1-x)^3 + 28^3*x^3/(1-x)^4 + 82^4*x^4/(1-x)^5 + 244^5*x^5/(1-x)^6 + 730^6*x^6/(1-x)^7 +...
%e A(x) = 1/(1-2*x) + 3*x/(1-4*x)^2 + 3^4*x^2/(1-10*x)^3 + 3^9*x^3/(1-28*x)^4 + 3^16*x^4/(1-82*x)^5 + 3^25*x^5/(1-244*x)^6 + 3^36*x^6/(1-730*x)^7 +...
%e Illustration of initial terms:
%e a(0) = 1;
%e a(1) = 1 + (1+3);
%e a(2) = 1 + 2*(1+3) + (1+3^2)^2;
%e a(3) = 1 + 3*(1+3) + 3*(1+3^2)^2 + (1+3^3)^3;
%e a(4) = 1 + 4*(1+3) + 6*(1+3^2)^2 + 4*(1+3^3)^3 + (1+3^4)^4;
%e a(5) = 1 + 5*(1+3) + 10*(1+3^2)^2 + 10*(1+3^3)^3 + 5*(1+3^4)^4 + (1+3^5)^5; ...
%e Also, by a binomial identity we have
%e a(0) = 1;
%e a(1) = 2 + 3;
%e a(2) = 2^2 + 2*(1+3)*3 + 3^4;
%e a(3) = 2^3 + 3*(1+3)^2*3 + 3*(1+3^2)*3^4 + 3^9;
%e a(4) = 2^4 + 4*(1+3)^3*3 + 6*(1+3^2)^2*3^4 + 4*(1+3^3)*3^9 + 3^16;
%e a(5) = 2^5 + 5*(1+3)^4*3 + 10*(1+3^2)^3*3^4 + 10*(1+3^3)^2*3^9 + 5*(1+3^4)*3^16 + 3^25; ...
%t Table[Sum[Binomial[n,k]*(1+3^k)^k,{k,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Jun 18 2014 *)
%o (PARI) {a(n)=sum(k=0, n, binomial(n, k)*(1+3^k)^k)}
%o for(n=0, 20, print1(a(n), ", "))
%o (PARI) {a(n)=sum(k=0, n, binomial(n, k)*(1+3^k)^(n-k)*3^(k^2))}
%o for(n=0, 20, print1(a(n), ", "))
%Y Cf. A243918, A202989.
%K nonn
%O 0,2
%A _Paul D. Hanna_, Jun 17 2014