The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A243921 G.f.: 1 = Sum_{n>=0} a(n) * x^n*(1-x)^(n+1) / Product_{k=1..n} (1 + 2*(k+1)*x). 3
1, 1, 6, 53, 612, 8676, 145268, 2798355, 60852004, 1472460760, 39202586348, 1138006266618, 35750917265544, 1207874695612336, 43655110115967528, 1680097198812367783, 68578132320350944324, 2958457556868808457800, 134469635178557071054492, 6421829932908536633173110 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Triangle T = A243920 is generated by sums of matrix powers of itself such that:
T(n,k) = Sum_{j=1..n-k-1} [T^j](n-1,k) with T(n+1,n) = 2*n+1 and T(n,n)=0 for n>=0.
LINKS
FORMULA
a(n) = A243920(n+1,1) / 3.
EXAMPLE
G.f.: 1 = 1*(1-x) + 1*x*(1-x)^2/(1+2*2*x) + 6*x^2*(1-x)^3/((1+2*2*x)*(1+2*3*x)) + 53*x^3*(1-x)^4/((1+2*2*x)*(1+2*3*x)*(1+2*4*x)) + 612*x^4*(1-x)^5/((1+2*2*x)*(1+2*3*x)*(1+2*4*x)*(1+2*5*x)) +...
PROG
(PARI) {a(n)=if(n<0, 0, polcoeff(1-sum(k=0, n-1, a(k)*x^k*(1-x)^(k+1)/prod(j=1, k, 1+2*(j+1)*x+x*O(x^n))), n))}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A066357 A276365 A185148 * A109092 A068416 A360231
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 15 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 24 11:42 EDT 2024. Contains 372773 sequences. (Running on oeis4.)