login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A243922 G.f.: 1 = Sum_{n>=0} a(n) * x^n*(1-x)^(n+1) / Product_{k=1..n} (1 + 2*(k+2)*x). 3
1, 1, 8, 87, 1186, 19328, 365120, 7824589, 187217370, 4940474068, 142398668848, 4447556785374, 149541503654196, 5382913372109528, 206455211385309248, 8402342525589672769, 361557591510622222090, 16397474363912261372852, 781575694749373121466960, 39053517651541054156854082 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Triangle T = A243920 is generated by sums of matrix powers of itself such that:
T(n,k) = Sum_{j=1..n-k-1} [T^j](n-1,k) with T(n+1,n) = 2*n+1 and T(n,n)=0 for n>=0.
LINKS
FORMULA
a(n) = A243920(n+2,2) / 5.
EXAMPLE
G.f.: 1 = 1*(1-x) + 1*x*(1-x)^2/(1+2*3*x) + 8*x^2*(1-x)^3/((1+2*3*x)*(1+2*4*x)) + 87*x^3*(1-x)^4/((1+2*3*x)*(1+2*4*x)*(1+2*5*x)) + 1186*x^4*(1-x)^5/((1+2*3*x)*(1+2*4*x)*(1+2*5*x)*(1+2*6*x)) +...
PROG
(PARI) {a(n)=if(n<0, 0, polcoeff(1-sum(k=0, n-1, a(k)*x^k*(1-x)^(k+1)/prod(j=1, k, 1+2*(j+2)*x+x*O(x^n))), n))}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A307822 A225613 A358982 * A239753 A246512 A366233
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 15 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 12 06:13 EDT 2024. Contains 371623 sequences. (Running on oeis4.)