login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212880
Decimal expansion of the negated argument of i!.
12
3, 0, 1, 6, 4, 0, 3, 2, 0, 4, 6, 7, 5, 3, 3, 1, 9, 7, 8, 8, 7, 5, 3, 1, 6, 5, 7, 7, 9, 6, 8, 9, 6, 5, 4, 0, 6, 5, 9, 8, 9, 9, 7, 7, 3, 9, 4, 3, 7, 6, 5, 2, 3, 6, 9, 4, 0, 7, 4, 4, 0, 0, 5, 3, 8, 3, 0, 6, 0, 5, 8, 1, 4, 3, 9, 5, 0, 2, 9, 5, 3, 3, 9, 9, 8, 9, 8, 2, 2, 6, 9, 7, 2, 7, 9, 5, 0, 1, 1, 9, 4, 2, 3, 4, 4
OFFSET
0,1
COMMENTS
The value is in radians.
LINKS
Steven R. Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020, p. 5.
Mircea Ivan, Problem 11592, The American Mathematical Monthly, Vol. 118, No. 7 (2011), p. 654; Arggh! Eye Factorial ... Arg(i!), Solutions to problem 11592 by Nora Thornbe, Omran Kouba and Denis Constales, ibid., Vol. 120, No. 7 (2013), p. 662-664.
Cornel Ioan Vălean, Problema 327, La Gaceta de la Real Sociedad Matemática Española, Vol. 21, No. 2 (2018), pp. 331-343.
FORMULA
Equals -arg(i*Gamma(i)), since i! = Gamma(1+i) = i*Gamma(i).
Equals lim_{n->infinity} ((Sum_{k=1..n} arctan(1/k)) - log(n)). - Jean-François Alcover, Aug 07 2014, after Steven Finch
Equals arctan(A212878/A212877). - Vaclav Kotesovec, Dec 10 2015
From Amiram Eldar, Jun 12 2021: (Start)
Equals 1 - Integral_{x=0..Pi/2} frac(cot(x)) dx, where frac(x) = x - floor(x) is the fractional part of x.
Equals gamma - Sum_{k>=1} (-1)^(k+1)*zeta(2*k+1)/(2*k+1) = A001620 - A352619.
Both formulae are from Vălean (2018). (End)
Equals log((Gamma(1-i)/Gamma(1+i))^(-i/2)). - Vaclav Kotesovec, Jun 12 2021
EXAMPLE
0.30164032046753319788753165779...
MATHEMATICA
RealDigits[-Arg[Gamma[1 + I]], 10, 105] // First (* Jean-François Alcover, Aug 07 2014 *)
CROSSREFS
Cf. A212877 (real(i!)), A212878 (-imag(i!)), A212879 (abs(i!)).
Cf. A001620 (gamma), A352619.
Sequence in context: A105147 A335262 A111924 * A211510 A243984 A100485
KEYWORD
nonn,cons,easy
AUTHOR
Stanislav Sykora, May 29 2012
STATUS
approved