OFFSET
0,6
COMMENTS
T(n,k) is defined for all n,k >= 0. The triangle contains only the terms with k<=n. T(n,k) = 0 for k>n.
LINKS
Alois P. Heinz, Rows n = 0..140, flattened
Eric Weisstein's World of Mathematics, Power Tower
Wikipedia, Knuth's up-arrow notation
Wikipedia, Tetration
FORMULA
EXAMPLE
Triangle T(n,k) begins:
1;
0, 1;
0, 0, 2;
0, 0, 3, 6;
0, 0, 8, 24, 24;
0, 0, 10, 170, 180, 120;
0, 0, 54, 900, 1980, 1440, 720;
0, 0, -42, 6566, 19530, 21840, 12600, 5040;
0, 0, 944, 44072, 224112, 305760, 248640, 120960, 40320;
...
MAPLE
f:= proc(n) option remember; `if`(n<0, 0,
`if`(n=0, 1, (x+1)^f(n-1)))
end:
T:= (n, k)-> n!*coeff(series(f(k)-f(k-1), x, n+1), x, n):
seq(seq(T(n, k), k=0..n), n=0..12);
# second Maple program:
b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0,
-add(binomial(n-1, j)*b(j, k)*add(binomial(n-j, i)*
(-1)^i*b(n-j-i, k-1)*(i-1)!, i=1..n-j), j=0..n-1)))
end:
T:= (n, k)-> b(n, min(k, n))-`if`(k=0, 0, b(n, min(k-1, n))):
seq(seq(T(n, k), k=0..n), n=0..12);
MATHEMATICA
f[n_] := f[n] = If[n < 0, 0, If[n == 0, 1, (x + 1)^f[n - 1]]];
T[n_, k_] := n!*SeriesCoefficient[f[k] - f[k - 1], { x, 0, n}];
Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten
(* second program: *)
b[n_, k_] := b[n, k] = If[n == 0, 1, If[k == 0, 0, -Sum[Binomial[n - 1, j]*b[j, k]*Sum[Binomial[n - j, i]*(-1)^i*b[n - j - i, k - 1]*(i - 1)!, {i, 1, n - j}], {j, 0, n - 1}]]];
T[n_, k_] := (b[n, Min[k, n]] - If[k == 0, 0, b[n, Min[k - 1, n]]]);
Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 28 2018, from Maple *)
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Alois P. Heinz, Oct 19 2016
STATUS
approved