login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277536
T(n,k) is the n-th derivative of the difference between the k-th tetration of x (power tower of order k) and its predecessor (or 0 if k=0) at x=1; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
6
1, 0, 1, 0, 0, 2, 0, 0, 3, 6, 0, 0, 8, 24, 24, 0, 0, 10, 170, 180, 120, 0, 0, 54, 900, 1980, 1440, 720, 0, 0, -42, 6566, 19530, 21840, 12600, 5040, 0, 0, 944, 44072, 224112, 305760, 248640, 120960, 40320, 0, 0, -5112, 365256, 2650536, 4818744, 4536000, 2993760, 1270080, 362880
OFFSET
0,6
COMMENTS
T(n,k) is defined for all n,k >= 0. The triangle contains only the terms with k<=n. T(n,k) = 0 for k>n.
LINKS
Eric Weisstein's World of Mathematics, Power Tower
Wikipedia, Tetration
FORMULA
E.g.f. of column k>0: (x+1)^^k - (x+1)^^(k-1), e.g.f. of column k=0: 1.
T(n,k) = [(d/dx)^n (x^^k - x^^(k-1))]_{x=1} for k>0, T(n,0) = A000007(n).
T(n,k) = A277537(n,k) - A277537(n,k-1) for k>0, T(n,0) = A000007(n).
T(n,k) = n * A295027(n,k) for n,k > 0.
EXAMPLE
Triangle T(n,k) begins:
1;
0, 1;
0, 0, 2;
0, 0, 3, 6;
0, 0, 8, 24, 24;
0, 0, 10, 170, 180, 120;
0, 0, 54, 900, 1980, 1440, 720;
0, 0, -42, 6566, 19530, 21840, 12600, 5040;
0, 0, 944, 44072, 224112, 305760, 248640, 120960, 40320;
...
MAPLE
f:= proc(n) option remember; `if`(n<0, 0,
`if`(n=0, 1, (x+1)^f(n-1)))
end:
T:= (n, k)-> n!*coeff(series(f(k)-f(k-1), x, n+1), x, n):
seq(seq(T(n, k), k=0..n), n=0..12);
# second Maple program:
b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0,
-add(binomial(n-1, j)*b(j, k)*add(binomial(n-j, i)*
(-1)^i*b(n-j-i, k-1)*(i-1)!, i=1..n-j), j=0..n-1)))
end:
T:= (n, k)-> b(n, min(k, n))-`if`(k=0, 0, b(n, min(k-1, n))):
seq(seq(T(n, k), k=0..n), n=0..12);
MATHEMATICA
f[n_] := f[n] = If[n < 0, 0, If[n == 0, 1, (x + 1)^f[n - 1]]];
T[n_, k_] := n!*SeriesCoefficient[f[k] - f[k - 1], { x, 0, n}];
Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten
(* second program: *)
b[n_, k_] := b[n, k] = If[n == 0, 1, If[k == 0, 0, -Sum[Binomial[n - 1, j]*b[j, k]*Sum[Binomial[n - j, i]*(-1)^i*b[n - j - i, k - 1]*(i - 1)!, {i, 1, n - j}], {j, 0, n - 1}]]];
T[n_, k_] := (b[n, Min[k, n]] - If[k == 0, 0, b[n, Min[k - 1, n]]]);
Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 28 2018, from Maple *)
CROSSREFS
Columns k=0-2 give: A000007, A063524, A005727 (for n>1).
Main diagonal gives A000142.
Row sums give A033917.
T(n+1,n)/3 gives A005990.
T(2n,n) gives A290023.
Sequence in context: A336309 A336255 A244120 * A348849 A351142 A269159
KEYWORD
sign,tabl
AUTHOR
Alois P. Heinz, Oct 19 2016
STATUS
approved