login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k) is the n-th derivative of the difference between the k-th tetration of x (power tower of order k) and its predecessor (or 0 if k=0) at x=1; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
6

%I #34 Oct 25 2021 14:17:37

%S 1,0,1,0,0,2,0,0,3,6,0,0,8,24,24,0,0,10,170,180,120,0,0,54,900,1980,

%T 1440,720,0,0,-42,6566,19530,21840,12600,5040,0,0,944,44072,224112,

%U 305760,248640,120960,40320,0,0,-5112,365256,2650536,4818744,4536000,2993760,1270080,362880

%N T(n,k) is the n-th derivative of the difference between the k-th tetration of x (power tower of order k) and its predecessor (or 0 if k=0) at x=1; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

%C T(n,k) is defined for all n,k >= 0. The triangle contains only the terms with k<=n. T(n,k) = 0 for k>n.

%H Alois P. Heinz, <a href="/A277536/b277536.txt">Rows n = 0..140, flattened</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PowerTower.html">Power Tower</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Knuth%27s_up-arrow_notation">Knuth's up-arrow notation</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Tetration">Tetration</a>

%F E.g.f. of column k>0: (x+1)^^k - (x+1)^^(k-1), e.g.f. of column k=0: 1.

%F T(n,k) = [(d/dx)^n (x^^k - x^^(k-1))]_{x=1} for k>0, T(n,0) = A000007(n).

%F T(n,k) = A277537(n,k) - A277537(n,k-1) for k>0, T(n,0) = A000007(n).

%F T(n,k) = n * A295027(n,k) for n,k > 0.

%e Triangle T(n,k) begins:

%e 1;

%e 0, 1;

%e 0, 0, 2;

%e 0, 0, 3, 6;

%e 0, 0, 8, 24, 24;

%e 0, 0, 10, 170, 180, 120;

%e 0, 0, 54, 900, 1980, 1440, 720;

%e 0, 0, -42, 6566, 19530, 21840, 12600, 5040;

%e 0, 0, 944, 44072, 224112, 305760, 248640, 120960, 40320;

%e ...

%p f:= proc(n) option remember; `if`(n<0, 0,

%p `if`(n=0, 1, (x+1)^f(n-1)))

%p end:

%p T:= (n, k)-> n!*coeff(series(f(k)-f(k-1), x, n+1), x, n):

%p seq(seq(T(n, k), k=0..n), n=0..12);

%p # second Maple program:

%p b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0,

%p -add(binomial(n-1, j)*b(j, k)*add(binomial(n-j, i)*

%p (-1)^i*b(n-j-i, k-1)*(i-1)!, i=1..n-j), j=0..n-1)))

%p end:

%p T:= (n, k)-> b(n, min(k, n))-`if`(k=0, 0, b(n, min(k-1, n))):

%p seq(seq(T(n, k), k=0..n), n=0..12);

%t f[n_] := f[n] = If[n < 0, 0, If[n == 0, 1, (x + 1)^f[n - 1]]];

%t T[n_, k_] := n!*SeriesCoefficient[f[k] - f[k - 1], { x, 0, n}];

%t Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten

%t (* second program: *)

%t b[n_, k_] := b[n, k] = If[n == 0, 1, If[k == 0, 0, -Sum[Binomial[n - 1, j]*b[j, k]*Sum[Binomial[n - j, i]*(-1)^i*b[n - j - i, k - 1]*(i - 1)!, {i, 1, n - j}], {j, 0, n - 1}]]];

%t T[n_, k_] := (b[n, Min[k, n]] - If[k == 0, 0, b[n, Min[k - 1, n]]]);

%t Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, May 28 2018, from Maple *)

%Y Columns k=0-2 give: A000007, A063524, A005727 (for n>1).

%Y Main diagonal gives A000142.

%Y Row sums give A033917.

%Y T(n+1,n)/3 gives A005990.

%Y T(2n,n) gives A290023.

%Y Cf. A277537, A295027.

%K sign,tabl

%O 0,6

%A _Alois P. Heinz_, Oct 19 2016