The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A244144 Alternating sum of digits of n^n. 3
1, 4, -5, 3, -1, 5, 5, -5, 5, 1, -11, -10, 8, 4, 21, -38, 8, -2, 7, 1, 1, 0, 10, -5, 23, 26, 3, -7, 19, 23, -24, 23, 11, 56, 10, 36, 5, 37, 24, -32, 8, 15, -1, -33, -10, 20, 20, -35, 31, 23, -18, 24, -14, -34, 0, -1, 40, 16, 14, -21, 6, -27, -17, -5, -32, 11, 12, -41, 59, -23, -38, 52, -42, -29, -21, 12, 0, -1, -39, 1, -7, -19, -7, -25, -34 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
The alternating sum of the digits of n^n is the sum obtained by alternately adding and subtracting the digits of n^n from left to right. For example, 4^4 = 256, therefore the alternating sum = 2 - 5 + 6 = 3. 7^7 = 823543, alternating sum = 8 - 2 + 3 - 5 + 4 - 3 = 5.
LINKS
EXAMPLE
If the function f(x) alternately adds and subtracts the digits of x from left to right, then:
a(1) = f(1^1) = f(1) = 1.
a(2) = f(2^2) = f(4) = 4.
a(3) = f(3^3) = f(27) = 2 - 7 = -5.
a(4) = f(4^4) = f(256) = 2 - 5 + 6 = 3.
a(9) = f(9^9) = f(387420489) = 3 - 8 + 7 - 4 + 2 - 0 + 4 - 8 + 9 = 5.
MAPLE
a:= n-> -(s->add(parse(s[i])*(-1)^i, i=1..length(s)))(""||(n^n)):
seq(a(n), n=1..80); # Alois P. Heinz, Jun 21 2014
MATHEMATICA
f[n_] := Block[ {d = Reverse[ IntegerDigits[ n]], k = l = 1, s = 0}, l = Length[d]; While[ k <= l, s = s - (-1)^k*d[[k]]; k++ ]; Return[s]]; Table[ f[n^n], {n, 1, 100} ] \\ Minor adaptation from program for A065796.
CROSSREFS
Sequence in context: A016494 A248144 A171870 * A201337 A291083 A114263
KEYWORD
sign,base,less
AUTHOR
Anthony Sand, Jun 21 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 17:39 EDT 2024. Contains 372765 sequences. (Running on oeis4.)