%I #12 Jun 21 2014 16:43:56
%S 1,4,5,3,1,5,5,5,5,1,11,10,8,4,21,38,8,2,7,1,1,0,10,5,23,26,3,
%T 7,19,23,24,23,11,56,10,36,5,37,24,32,8,15,1,33,10,20,20,35,31,
%U 23,18,24,14,34,0,1,40,16,14,21,6,27,17,5,32,11,12,41,59,23,38,52,42,29,21,12,0,1,39,1,7,19,7,25,34
%N Alternating sum of digits of n^n.
%C The alternating sum of the digits of n^n is the sum obtained by alternately adding and subtracting the digits of n^n from left to right. For example, 4^4 = 256, therefore the alternating sum = 2  5 + 6 = 3. 7^7 = 823543, alternating sum = 8  2 + 3  5 + 4  3 = 5.
%H Alois P. Heinz, <a href="/A244144/b244144.txt">Table of n, a(n) for n = 1..5000</a>
%e If the function f(x) alternately adds and subtracts the digits of x from left to right, then:
%e a(1) = f(1^1) = f(1) = 1.
%e a(2) = f(2^2) = f(4) = 4.
%e a(3) = f(3^3) = f(27) = 2  7 = 5.
%e a(4) = f(4^4) = f(256) = 2  5 + 6 = 3.
%e a(9) = f(9^9) = f(387420489) = 3  8 + 7  4 + 2  0 + 4  8 + 9 = 5.
%p a:= n> (s>add(parse(s[i])*(1)^i, i=1..length(s)))(""(n^n)):
%p seq(a(n), n=1..80); # _Alois P. Heinz_, Jun 21 2014
%t f[n_] := Block[ {d = Reverse[ IntegerDigits[ n]], k = l = 1, s = 0}, l = Length[d]; While[ k <= l, s = s  (1)^k*d[[k]]; k++ ]; Return[s]]; Table[ f[n^n], {n, 1, 100} ] \\ Minor adaptation from program for A065796.
%Y Cf. A065796, A066588.
%K sign,base,less
%O 1,2
%A _Anthony Sand_, Jun 21 2014
