The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A114263 Smallest number m such that prime(n) + 2*prime(n+m) is a prime. 3
 1, 1, 1, 1, 1, 4, 5, 3, 2, 2, 3, 1, 1, 4, 5, 1, 5, 4, 2, 2, 2, 2, 1, 3, 1, 1, 8, 4, 1, 1, 2, 3, 9, 2, 5, 2, 2, 9, 6, 1, 1, 1, 1, 2, 3, 4, 1, 4, 5, 8, 11, 1, 11, 4, 5, 1, 4, 1, 5, 8, 1, 1, 1, 1, 2, 5, 1, 5, 9, 2, 1, 10, 3, 4, 4, 5, 5, 6, 7, 4, 1, 1, 2, 4, 13, 6, 6, 6, 7, 9, 1, 3, 1, 7, 3, 9, 1, 3, 3, 6, 3, 8, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,6 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 2..10000 EXAMPLE n=2: prime(2)+2*prime(2+1)=3+2*5=13 is prime, so a(2)=1; n=3: prime(3)+2*prime(3+1)=5+2*7=19 is prime, so a(2)=1; ... n=7: prime(7)+2*prime(7+1)=17+2*19=55 is not prime ... prime(7)+2*prime(7+4)=17+2*31=79 is prime, so a(7)=4; MATHEMATICA Table[p1 = Prime[n1]; n2 = 1; p2 = Prime[n1 + n2]; While[cp = p1 + 2* p2; ! PrimeQ[cp], n2++; p2 = Prime[n1 + n2]]; n2, {n1, 2, 201}] PROG (Haskell) a114263 n = head [m | m <- [1..n], a010051 (a000040 n + 2 * a000040 (n + m)) == 1] -- Reinhard Zumkeller, Oct 31 2013 CROSSREFS Cf. A114227, A114230, A073703, A114235, A114262, A114228, A114231, A114233, A114236. Cf. A010051, A000040. Sequence in context: A244144 A201337 A291083 * A094850 A163973 A369500 Adjacent sequences: A114260 A114261 A114262 * A114264 A114265 A114266 KEYWORD easy,nonn AUTHOR Lei Zhou, Nov 20 2005 EXTENSIONS Edited definition to conform to OEIS style. - Reinhard Zumkeller, Oct 31 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 27 01:42 EDT 2024. Contains 372847 sequences. (Running on oeis4.)