

A369500


Decimal expansion of Sum_{k=oo..oo} 1/(2^(k/2)+2^(k/2)).


0



4, 5, 3, 2, 3, 6, 0, 1, 4, 1, 8, 3, 4, 9, 6, 8, 7, 0, 2, 1, 4, 2, 4, 6, 8, 9, 8, 7, 9, 2, 8, 9, 6, 4, 7, 3, 7, 8, 6, 9, 7, 3, 8, 6, 7, 7, 3, 7, 9, 1, 1, 8, 4, 2, 4, 8, 0, 2, 7, 3, 0, 0, 3, 2, 0, 5, 5, 5, 0, 3, 6, 4, 8, 8, 3, 6, 7, 1, 5, 3, 5, 8, 2, 6, 2, 5, 4, 2, 0, 3, 0, 9, 1, 2, 6, 2, 6, 0, 6, 2, 1, 6, 5, 1, 7
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Larger than Pi/log(2) by less than 10^(11).


LINKS



FORMULA

Equals (Pi/log(2)) * (1 + 2 * Sum_{k>=1} sech(2*k*Pi^2/log(2))).


EXAMPLE

4.5323601418349687021424689879289647378697386773791184248...


MATHEMATICA

RealDigits[Chop[N[Sum[1/(2^(k/2) + 2^(k/2)), {k, Infinity, Infinity}], 120]]][[1]]


PROG

(PARI) (Pi/log(2)) * (1 + 2 * sumpos(k = 1, 1/cosh(2*k*Pi^2/log(2))))


CROSSREFS



KEYWORD



AUTHOR



STATUS

approved



