login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114266
a(n) is the minimal number m that makes 2*prime(n)+prime(n+m) a prime.
2
1, 1, 1, 3, 3, 1, 1, 1, 3, 1, 2, 4, 6, 2, 6, 2, 1, 2, 5, 5, 2, 1, 2, 3, 5, 3, 1, 6, 1, 1, 8, 2, 4, 7, 1, 9, 3, 2, 9, 7, 5, 10, 4, 5, 1, 5, 5, 1, 1, 1, 8, 1, 1, 4, 6, 2, 1, 2, 12, 10, 1, 11, 8, 3, 11, 2, 2, 1, 4, 1, 7, 2, 3, 2, 11, 2, 3, 3, 3, 1, 1, 5, 2, 5, 1, 7, 3, 3, 4, 6, 4, 7, 4, 1, 9, 5, 3, 2, 4, 7, 2, 9, 2
OFFSET
1,4
LINKS
EXAMPLE
n=1: 2*prime(1)+prime(1+1)=2*2+3=7 is prime, so a(1)=1;
n=2: 2*prime(2)+prime(2+1)=2*3+5=11 is prime, so a(2)=1;
...
n=4: 2*prime(4)+prime(4+1)=2*7+11=25 is not prime
...
2*prime(4)+prime(4+3)=2*7+17=31 is prime, so a(4)=3.
MATHEMATICA
Table[p1 = Prime[n1]; n2 = 1; p2 = Prime[n1 + n2]; While[cp = 2*p1 + p2; ! PrimeQ[cp], n2++; p2 = Prime[n1 + n2]]; n2, {n1, 1, 200}]
mnm[n_]:=Module[{m=1, p=2Prime[n]}, While[!PrimeQ[p+Prime[n+m]], m++]; m]; Array[mnm, 110] (* Harvey P. Dale, Aug 05 2017 *)
PROG
(Haskell)
a114266 n = head [m | m <- [1..],
a010051 (2 * a000040 n + a000040 (n + m)) == 1]
-- Reinhard Zumkeller, Oct 29 2013
KEYWORD
easy,nonn
AUTHOR
Lei Zhou, Nov 20 2005
EXTENSIONS
Edited definition to conform to OEIS style. - N. J. A. Sloane, Jan 08 2011
STATUS
approved