login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285117
Triangle read by rows: T(0,n) = T(n,n) = 1; and for n > 0, 0 < k < n, T(n,k) = C(n-1,k-1) XOR C(n-1,k), where C(n,k) is binomial coefficient (A007318) and XOR is bitwise-XOR (A003987).
4
1, 1, 1, 1, 0, 1, 1, 3, 3, 1, 1, 2, 0, 2, 1, 1, 5, 2, 2, 5, 1, 1, 4, 15, 0, 15, 4, 1, 1, 7, 9, 27, 27, 9, 7, 1, 1, 6, 18, 54, 0, 54, 18, 6, 1, 1, 9, 20, 36, 126, 126, 36, 20, 9, 1, 1, 8, 45, 112, 42, 0, 42, 112, 45, 8, 1, 1, 11, 39, 85, 170, 46, 46, 170, 85, 39, 11, 1, 1, 10, 60, 146, 495, 132, 0, 132, 495, 146, 60, 10, 1
OFFSET
0,8
FORMULA
T(0,n) = T(n,n) = 1; and for n > 0, 0 < k < n, T(n,k) = C(n-1,k-1) XOR C(n-1,k), where C(n,k) is binomial coefficient (A007318) and XOR is bitwise-XOR (A003987).
T(n,k) = A285116(n,k) - A285118(n,k).
C(n,k) = T(n,k) + 2*A285118(n,k). [Where C(n,k) = A007318.]
EXAMPLE
Rows 0 - 12 of the triangle:
1,
1, 1,
1, 0, 1,
1, 3, 3, 1,
1, 2, 0, 2, 1,
1, 5, 2, 2, 5, 1,
1, 4, 15, 0, 15, 4, 1,
1, 7, 9, 27, 27, 9, 7, 1,
1, 6, 18, 54, 0, 54, 18, 6, 1,
1, 9, 20, 36, 126, 126, 36, 20, 9, 1,
1, 8, 45, 112, 42, 0, 42, 112, 45, 8, 1,
1, 11, 39, 85, 170, 46, 46, 170, 85, 39, 11, 1,
1, 10, 60, 146, 495, 132, 0, 132, 495, 146, 60, 10, 1
MATHEMATICA
T[n_, k_]:= If[n==0 || n==k, 1, BitXor[Binomial[n - 1, k - 1], Binomial[n - 1, k]]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Indranil Ghosh, Apr 16 2017 *)
PROG
(Scheme)
(define (A285117 n) (A285117tr (A003056 n) (A002262 n)))
(define (A285117tr n k) (cond ((zero? k) 1) ((= k n) 1) (else (A003987tr (A007318tr (- n 1) (- k 1)) (A007318tr (- n 1) k))))) ;; Where A003987bi implements bitwise-XOR (A003987) and A007318tr gives the binomial coefficients (A007318).
(PARI) T(n, k) = if (n==0 || n==k, 1, bitxor(binomial(n - 1, k - 1), binomial(n - 1, k)));
for(n=0, 12, for(k=0, n, print1(T(n, k), ", "); ); print(); ) \\ Indranil Ghosh, Apr 16 2017
CROSSREFS
Cf. A285114 (row sums).
Sequence in context: A319861 A114266 A230206 * A135910 A255916 A367825
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, Apr 16 2017
STATUS
approved