login
A135910
Number of triples (x,y,z) of nonnegative integers such that x^2+y^3+z^4 = n.
4
1, 3, 3, 1, 1, 2, 1, 0, 1, 3, 3, 1, 1, 1, 0, 0, 2, 5, 3, 0, 1, 1, 0, 0, 2, 4, 3, 2, 3, 1, 0, 1, 2, 3, 1, 0, 2, 3, 1, 0, 1, 1, 1, 2, 3, 1, 0, 1, 0, 2, 2, 1, 3, 2, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 3, 5, 3, 0, 2, 1, 0, 0, 1, 3, 1, 0, 1, 1, 0, 1, 3, 5, 4, 2, 1, 1, 1, 0, 1, 4, 4, 2, 2, 1, 0, 0, 1, 2, 3, 0, 2
OFFSET
0,2
LINKS
K. B. Ford, The representation of numbers as sums of unlike powers II, J. Amer. Math. Soc., 9 (1996), 919-940.
MAPLE
M:=10; M2:=M^2; t0:=array(0..M2);
for i from 0 to M2 do t0[i]:=0; od:
for a from 0 to M do for b from 0 to M do for c from 0 to M do
i:=a^2+b^3+c^4; if i <= M2 then t0[i]:=t0[i]+1; fi;
od: od: od: [seq(t0[i], i=0..M2)];
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 07 2008
STATUS
approved