login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367825
Array read by ascending antidiagonals: A(n, k) is the denominator of (R(n) - k)/(n + k), where R(n) is the digit reversal of n, with A(0, 0) = 1.
3
1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 2, 1, 2, 1, 1, 5, 5, 5, 5, 1, 1, 3, 3, 1, 3, 3, 1, 1, 7, 7, 7, 7, 7, 7, 1, 1, 4, 2, 4, 1, 4, 2, 4, 1, 1, 9, 9, 3, 9, 9, 3, 9, 9, 1, 10, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 1, 1, 11, 11, 11, 11, 11, 11, 11, 11, 11, 1, 4, 6, 12, 2, 3, 6, 1, 6, 3, 2, 3, 6, 1
OFFSET
0,8
COMMENTS
This array generalizes A367728.
LINKS
FORMULA
A(1, n) = A026741(n+1).
A(2, n) = A060819(n+2).
A(3, n) = A060789(n+3).
A(4, n) = A106609(n+4).
A(5, n) = A106611(n+5).
A(6, n) = A051724(n+6).
A(7, n) = A106615(n+7).
A(8, n) = A106617(n+8) = A231190(n+16).
A(9, n) = A106619(n+9).
A(10, n) = A106612(n+10).
EXAMPLE
The array of the fractions begins:
1, -1, -1, -1, -1, -1, -1, -1, ...
1, 0, -1/3, -1/2, -3/5, -2/3, -5/7, -3/4, ...
1, 1/3, 0, -1/5, -1/3, -3/7, -1/2, -5/9, ...
1, 1/2, 1/5, 0, -1/7, -1/4, -1/3, -2/5, ...
1, 3/5, 1/3, 1/7, 0, -1/9, -1/5, -3/11, ...
1, 2/3, 3/7, 1/4, 1/9, 0, -1/11, -1/6, ...
1, 5/7, 1/2, 1/3, 1/5, 1/11, 0, -1/13, ...
1, 3/4, 5/9, 2/5, 3/11, 1/6, 1/13, 0, ...
...
The array of the denominators begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 3, 2, 5, 3, 7, 4, ...
1, 3, 1, 5, 3, 7, 2, 9, ...
1, 2, 5, 1, 7, 4, 3, 5, ...
1, 5, 3, 7, 1, 9, 5, 11, ...
1, 3, 7, 4, 9, 1, 11, 6, ...
1, 7, 2, 3, 5, 11, 1, 13, ...
1, 4, 9, 5, 11, 6, 13, 1, ...
...
MATHEMATICA
A[0, 0]=1; A[n_, k_]:=Denominator[(FromDigits[Reverse[IntegerDigits[n]]]-k)/(n+k)]; Table[A[n-k, k], {n, 0, 12}, {k, 0, n}]//Flatten
CROSSREFS
Cf. A367824 (numerator), A367827 (antidiagonal sums).
Sequence in context: A285117 A135910 A255916 * A107333 A161642 A152141
KEYWORD
nonn,base,frac,tabl
AUTHOR
Stefano Spezia, Dec 02 2023
STATUS
approved