login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367824
Array read by ascending antidiagonals: A(n, k) is the numerator of (R(n) - k)/(n + k), where R(n) is the digit reversal of n, with A(0, 0) = 1.
3
1, 1, -1, 1, 0, -1, 1, 1, -1, -1, 1, 1, 0, -1, -1, 1, 3, 1, -1, -3, -1, 1, 2, 1, 0, -1, -2, -1, 1, 5, 3, 1, -1, -3, -5, -1, 1, 3, 1, 1, 0, -1, -1, -3, -1, 1, 7, 5, 1, 1, -1, -1, -5, -7, -1, 1, 4, 3, 2, 1, 0, -1, -2, -3, -4, -1, 1, 0, 7, 5, 3, 1, -1, -3, -5, -7, -9, -1
OFFSET
0,17
COMMENTS
This array generalizes A367727.
LINKS
FORMULA
A(1, n) = -A026741(n-1) for n > 0.
A(2, n) = -A060819(n-2) for n > 2.
A(3, n) = -A060789(n-3) for n > 3.
A(4, n) = -A106609(n-4) for n > 3.
A(5, n) = -A106611(n-5) for n > 4.
A(6, n) = -A051724(n-6) for n > 5.
A(7, n) = -A106615(n-7) for n > 6.
A(8, n) = -A106617(n-8) = A231190(n) for n > 7.
A(9, n) = -A106619(n-9) for n > 8.
A(10, n) = -A106612(n-10) for n > 9.
EXAMPLE
The array of the fractions begins:
1, -1, -1, -1, -1, -1, -1, -1, ...
1, 0, -1/3, -1/2, -3/5, -2/3, -5/7, -3/4, ...
1, 1/3, 0, -1/5, -1/3, -3/7, -1/2, -5/9, ...
1, 1/2, 1/5, 0, -1/7, -1/4, -1/3, -2/5, ...
1, 3/5, 1/3, 1/7, 0, -1/9, -1/5, -3/11, ...
1, 2/3, 3/7, 1/4, 1/9, 0, -1/11, -1/6, ...
1, 5/7, 1/2, 1/3, 1/5, 1/11, 0, -1/13, ...
1, 3/4, 5/9, 2/5, 3/11, 1/6, 1/13, 0, ...
...
The array of the numerators begins:
1, -1, -1, -1, -1, -1, -1, -1, ...
1, 0, -1, -1, -3, -2, -5, -3, ...
1, 1, 0, -1, -1, -3, -1, -5, ...
1, 1, 1, 0, -1, -1, -1, -2, ...
1, 3, 1, 1, 0, -1, -1, -3, ...
1, 2, 3, 1, 1, 0, -1, -1, ...
1, 5, 1, 1, 1, 1, 0, -1, ...
1, 3, 5, 2, 3, 1, 1, 0, ...
...
MATHEMATICA
A[0, 0]=1; A[n_, k_]:=Numerator[(FromDigits[Reverse[IntegerDigits[n]]]-k)/(n+k)]; Table[A[n-k, k], {n, 0, 11}, {k, 0, n}]//Flatten
CROSSREFS
Cf. A367825 (denominator), A367826 (antidiagonal sums).
Sequence in context: A124921 A090623 A098094 * A087283 A355924 A111625
KEYWORD
sign,base,frac,look,tabl
AUTHOR
Stefano Spezia, Dec 02 2023
STATUS
approved