OFFSET
0,11
COMMENTS
The symmetric group distribution of permutation descents is summarized in Table A008292; for example 1 57 302 302 57 1 sums the following A060351 values:
1.......5.......10.......10.......5.......1
.......14.......35.......35.......14.......
.......19.......26.......40.......19.......
.......14.......40.......19.......14.......
........5.......61.......26.......5.......
................26.......61..............
................19.......40..............
................40.......26..............
................35.......35..............
................10.......10..............
LINKS
Alois P. Heinz, Rows n = 0..14, flattened
EXAMPLE
The distribution is based on the frequency of descents; for example, when permuting four symbols the 12 patterns are ddd ddu dud udu dud duu udd udu dud udu uud and uuu yielding the frequency distribution 1 1 3 1 1 3 1 1.
Triangle T(n,k) begins:
1;
1;
1, 0;
1, 1, 1, 0;
1, 1, 3, 1, 1, 3, 1, 1;
1, 2, 5, 2, 5, 8, 5, 2, 2, 5, 8, 5, 2, 5, 2, 1;
...
MAPLE
b:= proc(u, o, t, h) option remember; expand(`if`(u+o=0, h,
add(b(u-j, o+j-1, t+1, irem(h+u-j, 2))*x^floor(2^(t-1)), j=1..u)+
add(b(u+j-1, o-j, t+1, irem(h+u+j-1, 2)), j=1..o)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..ceil(2^(n-1)-1)))(b(n, 0$2, 1)):
seq(T(n), n=0..7); # Alois P. Heinz, Sep 09 2020
MATHEMATICA
b[u_, o_, t_, h_] := b[u, o, t, h] = Expand[If[u+o == 0, h,
Sum[b[u-j, o+j-1, t+1, Mod[h+u-j, 2]]*x^Floor[2^(t-1)], {j, 1, u}]+
Sum[b[u+j-1, o-j, t+1, Mod[h+u+j-1, 2]], {j, 1, o}]]];
T[n_] := With[{p = b[n, 0, 0, 1]}, Table[Coefficient[p, x, i],
{i, 0, Ceiling[2^(n-1)-1]}]];
T /@ Range[0, 7] // Flatten (* Jean-François Alcover, Feb 14 2021, after Alois P. Heinz *)
CROSSREFS
KEYWORD
AUTHOR
Alford Arnold, Nov 16 2006
EXTENSIONS
More terms from Alois P. Heinz, Sep 09 2020
STATUS
approved