This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A058965 Continued fraction expansion of series-parallel constant. 2
 0, 3, 1, 1, 3, 1, 1, 1, 1, 3, 1, 3, 12, 1, 8, 8, 1, 7, 6, 1, 5, 2, 1, 1, 4, 1, 3, 2, 36, 1, 10, 6, 1, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES J. W. Moon, Some enumerative results on series-parallel networks, Annals Discrete Math., 33 (1987), 199-226. J. Riordan and C. E. Shannon, The number of two-terminal series-parallel networks, J. Math. Phys., 21 (1942), 83-93. Reprinted in Claude Elwood Shannon: Collected Papers, edited by N. J. A. Sloane and A. D. Wyner, IEEE Press, NY, 1993, pp. 560-570. LINKS S. R. Finch, Series-parallel networks, July 7, 2003. [Cached copy, with permission of the author] O. Golinelli, Asymptotic behavior of two-terminal series-parallel networks, arXiv:cond-mat/9707023 [cond-mat.stat-mech], 1997. FORMULA This number, c, is defined by Product_{n=1..inf} (1-c^n)^(-A000669[n]) = 2. EXAMPLE Constant is 0.2808326669842003553932... CROSSREFS See A058964 for decimal expansion. Cf. A000084, A000669. Sequence in context: A262681 A076498 A110268 * A226306 A090623 A098094 Adjacent sequences:  A058962 A058963 A058964 * A058966 A058967 A058968 KEYWORD nonn,cofr,more AUTHOR N. J. A. Sloane, E. M. Rains, Jan 14 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 17 18:48 EST 2019. Contains 319251 sequences. (Running on oeis4.)