login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111625
n divided by the second lower diagonal of A109626 & 3/2 -> 2.
0
3, 1, 1, 3, 1, 1, 3, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1
OFFSET
1,1
COMMENTS
A sequence of just 1's, 2's and 3's.
a/A111624(n)=1 if n == 0,2 (Mod 3).
a(3n-2): 3,3,3,2,3,2,2,1,3,3,1,2,2,3,3,3,1,2,2,1,1,3,2,1,1,2,3,1,1,3,2,3,2,2,1,2,3,2,2,2,3,3,3,3,2,1,1,3
MATHEMATICA
f[n_] := f[n] = Block[{a}, a[0] = 1; a[l_] := a[l] = Block[{k = 1, s = Sum[ a[i]*x^i, {i, 0, l - 1}]}, While[ IntegerQ[ Last[ CoefficientList[ Series[(s + k*x^l)^(1/n), {x, 0, l}], x]]] != True, k++ ]; k]; Table[ a[j], {j, 0, 144}]]; g[n_, m_] := f[n][[m]]; Table[ Ceiling[ n/g[n, n - 2]], {n, 3, 108}]
CROSSREFS
Cf. A111624.
Sequence in context: A367824 A087283 A355924 * A109007 A132951 A366520
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Aug 03 2005
STATUS
approved