login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132951
Period 6: repeat [1, 3, 1, -1, -3, -1].
1
1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1
OFFSET
0,2
FORMULA
a(n) = 3*a(n-1)-a(n-3)+3*a(n-4).
O.g.f.: (1+3*x+x^2)/((x+1)*(x^2-x+1)) = -(1/3)/(x+1)+(1/3)*(4*x+4)/(x^2-x+1). - R. J. Mathar, Nov 28 2007
a(n) = -(1/3)*(-1)^n+(4/3)*cos(Pi*n/3)+(4*3^0.5/3)*sin(Pi*n/3). - Richard Choulet, Jan 02 2008
a(n) = a(n-6) = A131531(n+3)+A131531(n+1)+3*A131531(n+2). - R. J. Mathar, Apr 04 2008
a(n) = A109007(n+2) * A130151(n). - Wesley Ivan Hurt, Jun 22 2013
MATHEMATICA
PadRight[{}, 120, {1, 3, 1, -1, -3, -1}] (* Harvey P. Dale, Feb 26 2024 *)
PROG
(PARI) a(n)=[1, 3, 1, -1, -3, -1][n%6+1] \\ Charles R Greathouse IV, Jun 02 2011
(Magma) &cat [[1, 3, 1, -1, -3, -1]: n in [0..20]]; // Wesley Ivan Hurt, Nov 18 2022
CROSSREFS
KEYWORD
sign,easy,less
AUTHOR
Paul Curtz, Nov 22 2007
EXTENSIONS
Edited by N. J. A. Sloane, May 16 2008 at the suggestion of R. J. Mathar.
STATUS
approved