login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Period 6: repeat [1, 3, 1, -1, -3, -1].
1

%I #34 Feb 26 2024 13:41:33

%S 1,3,1,-1,-3,-1,1,3,1,-1,-3,-1,1,3,1,-1,-3,-1,1,3,1,-1,-3,-1,1,3,1,-1,

%T -3,-1,1,3,1,-1,-3,-1,1,3,1,-1,-3,-1,1,3,1,-1,-3,-1,1,3,1,-1,-3,-1,1,

%U 3,1,-1,-3,-1,1,3,1,-1,-3,-1,1,3,1,-1,-3,-1,1,3,1,-1,-3,-1,1,3,1,-1,-3,-1,1,3,1,-1,-3,-1,1,3,1,-1,-3,-1,1,3,1,-1,-3,-1,1,3,1,-1,-3,-1

%N Period 6: repeat [1, 3, 1, -1, -3, -1].

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,-1).

%F a(n) = 3*a(n-1)-a(n-3)+3*a(n-4).

%F O.g.f.: (1+3*x+x^2)/((x+1)*(x^2-x+1)) = -(1/3)/(x+1)+(1/3)*(4*x+4)/(x^2-x+1). - _R. J. Mathar_, Nov 28 2007

%F a(n) = -(1/3)*(-1)^n+(4/3)*cos(Pi*n/3)+(4*3^0.5/3)*sin(Pi*n/3). - _Richard Choulet_, Jan 02 2008

%F a(n) = a(n-6) = A131531(n+3)+A131531(n+1)+3*A131531(n+2). - _R. J. Mathar_, Apr 04 2008

%F a(n) = A109007(n+2) * A130151(n). - _Wesley Ivan Hurt_, Jun 22 2013

%t PadRight[{},120,{1,3,1,-1,-3,-1}] (* _Harvey P. Dale_, Feb 26 2024 *)

%o (PARI) a(n)=[1,3,1,-1,-3,-1][n%6+1] \\ _Charles R Greathouse IV_, Jun 02 2011

%o (Magma) &cat [[1, 3, 1, -1, -3, -1]: n in [0..20]]; // _Wesley Ivan Hurt_, Nov 18 2022

%Y Cf. A109007, A130151, A131531.

%K sign,easy,less

%O 0,2

%A _Paul Curtz_, Nov 22 2007

%E Edited by _N. J. A. Sloane_, May 16 2008 at the suggestion of _R. J. Mathar_.