login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Array read by ascending antidiagonals: A(n, k) is the numerator of (R(n) - k)/(n + k), where R(n) is the digit reversal of n, with A(0, 0) = 1.
3

%I #24 Dec 08 2023 11:38:50

%S 1,1,-1,1,0,-1,1,1,-1,-1,1,1,0,-1,-1,1,3,1,-1,-3,-1,1,2,1,0,-1,-2,-1,

%T 1,5,3,1,-1,-3,-5,-1,1,3,1,1,0,-1,-1,-3,-1,1,7,5,1,1,-1,-1,-5,-7,-1,1,

%U 4,3,2,1,0,-1,-2,-3,-4,-1,1,0,7,5,3,1,-1,-3,-5,-7,-9,-1

%N Array read by ascending antidiagonals: A(n, k) is the numerator of (R(n) - k)/(n + k), where R(n) is the digit reversal of n, with A(0, 0) = 1.

%C This array generalizes A367727.

%H Stefano Spezia, <a href="/A367824/b367824.txt">First 151 antidiagonals of the array</a>

%F A(1, n) = -A026741(n-1) for n > 0.

%F A(2, n) = -A060819(n-2) for n > 2.

%F A(3, n) = -A060789(n-3) for n > 3.

%F A(4, n) = -A106609(n-4) for n > 3.

%F A(5, n) = -A106611(n-5) for n > 4.

%F A(6, n) = -A051724(n-6) for n > 5.

%F A(7, n) = -A106615(n-7) for n > 6.

%F A(8, n) = -A106617(n-8) = A231190(n) for n > 7.

%F A(9, n) = -A106619(n-9) for n > 8.

%F A(10, n) = -A106612(n-10) for n > 9.

%e The array of the fractions begins:

%e 1, -1, -1, -1, -1, -1, -1, -1, ...

%e 1, 0, -1/3, -1/2, -3/5, -2/3, -5/7, -3/4, ...

%e 1, 1/3, 0, -1/5, -1/3, -3/7, -1/2, -5/9, ...

%e 1, 1/2, 1/5, 0, -1/7, -1/4, -1/3, -2/5, ...

%e 1, 3/5, 1/3, 1/7, 0, -1/9, -1/5, -3/11, ...

%e 1, 2/3, 3/7, 1/4, 1/9, 0, -1/11, -1/6, ...

%e 1, 5/7, 1/2, 1/3, 1/5, 1/11, 0, -1/13, ...

%e 1, 3/4, 5/9, 2/5, 3/11, 1/6, 1/13, 0, ...

%e ...

%e The array of the numerators begins:

%e 1, -1, -1, -1, -1, -1, -1, -1, ...

%e 1, 0, -1, -1, -3, -2, -5, -3, ...

%e 1, 1, 0, -1, -1, -3, -1, -5, ...

%e 1, 1, 1, 0, -1, -1, -1, -2, ...

%e 1, 3, 1, 1, 0, -1, -1, -3, ...

%e 1, 2, 3, 1, 1, 0, -1, -1, ...

%e 1, 5, 1, 1, 1, 1, 0, -1, ...

%e 1, 3, 5, 2, 3, 1, 1, 0, ...

%e ...

%t A[0,0]=1; A[n_,k_]:=Numerator[(FromDigits[Reverse[IntegerDigits[n]]]-k)/(n+k)]; Table[A[n-k,k],{n,0,11},{k,0,n}]//Flatten

%Y Cf. A367825 (denominator), A367826 (antidiagonal sums).

%Y Cf. A004086, A026741, A051724, A060789, A060819, A106609, A106611, A106612, A106617, A106619, A153881 (n=0), A231190, A367727 (k=1).

%K sign,base,frac,look,tabl

%O 0,17

%A _Stefano Spezia_, Dec 02 2023