OFFSET
0,3
COMMENTS
In general, the numerators of n/(n+p) for prime p and n >= 0, form a sequence with the g.f.: x/(1-x)^2 - (p-1)*x^p/(1-x^p)^2. - Paul D. Hanna, Jul 27 2005
a(n) <> n iff n = 11 * k, in this case, a(n) = k. - Bernard Schott, Feb 19 2019
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,-1).
FORMULA
G.f.: x/(1-x)^2 - 10*x^11/(1-x^11)^2. - Paul D. Hanna, Jul 27 2005
a(n) = lcm(n,11)/11.
From R. J. Mathar, Apr 18 2011: (Start)
a(n) = A109052(n)/11.
Dirichlet g.f.: zeta(s-1)*(1-10/11^s). (End)
a(n) = 2*a(n-11) - a(n-22). - G. C. Greubel, Feb 19 2019
From Amiram Eldar, Nov 25 2022: (Start)
Multiplicative with a(11^e) = 11^(e-1), and a(p^e) = p^e if p != 11.
Sum_{k=1..n} a(k) ~ (111/242) * n^2. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = 21*log(2)/11. - Amiram Eldar, Sep 08 2023
MAPLE
seq(numer(n/(n+11)), n=0..80); # Muniru A Asiru, Feb 19 2019
MATHEMATICA
f[n_]:=Numerator[n/(n+11)]; Array[f, 100, 0] (* Vladimir Joseph Stephan Orlovsky, Feb 17 2011 *)
LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}, 80] (* Harvey P. Dale, Jul 05 2021 *)
PROG
(Sage) [lcm(n, 11)/11 for n in range(0, 54)] # Zerinvary Lajos, Jun 09 2009
(Magma) [Numerator(n/(n+11)): n in [0..100]]; // Vincenzo Librandi, Apr 18 2011
(PARI) vector(100, n, n--; numerator(n/(n+11))) \\ G. C. Greubel, Feb 19 2019
(GAP) List([0..80], n->NumeratorRat(n/(n+11))); # Muniru A Asiru, Feb 19 2019
CROSSREFS
KEYWORD
nonn,frac,mult,easy
AUTHOR
N. J. A. Sloane, May 15 2005
STATUS
approved