OFFSET
0,3
COMMENTS
In general, the numerators of n/(n+p) for prime p and n >= 0 form a sequence with the g.f.: x/(1-x)^2 - (p-1)*x^p/(1-x^p)^2. - Paul D. Hanna, Jul 27 2005
Generalizing the above comment of Hanna, the numerators of n/(n + k) for a fixed positive integer k and n >= 0 form a sequence with the g.f.: Sum_{d divides k} f(d)*x^d/(1 - x^d)^2, where f(n) is the Dirichlet inverse of the Euler totient function A000010. f(n) is a multiplicative function defined on prime powers p^k by f(p^k) = 1 - p. See A023900. - Peter Bala, Feb 17 2019
a(n) <> n iff n = 7 * k, in this case, a(n) = k. - Bernard Schott, Feb 19 2019
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,2,0,0,0,0,0,0,-1).
FORMULA
G.f.: x/(1-x)^2 - 6*x^7/(1-x^7)^2. - Paul D. Hanna, Jul 27 2005
From R. J. Mathar, Apr 18 2011: (Start)
a(n) = A109048(n)/7.
Dirichlet g.f.: zeta(s-1)*(1-6/7^s).
Multiplicative with a(p^e) = p^e if p<>7, a(7^e) = 7^(e-1) if e > 0. (End)
Sum_{k=1..n} a(k) ~ (43/98) * n^2. - Amiram Eldar, Nov 25 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = 13*log(2)/7. - Amiram Eldar, Sep 08 2023
MAPLE
seq(numer(n/(n+7)), n=0..80); # Muniru A Asiru, Feb 19 2019
MATHEMATICA
f[n_]:=Numerator[n/(n+7)]; Array[f, 100, 0] (* Vladimir Joseph Stephan Orlovsky, Feb 16 2011 *)
PROG
(Sage) [lcm(n, 7)/7 for n in range(0, 100)] # Zerinvary Lajos, Jun 09 2009
(Magma) [Numerator(n/(n+7)): n in [0..100]]; // Vincenzo Librandi, Apr 18 2011
(PARI) vector(100, n, n--; numerator(n/(n+7))) \\ G. C. Greubel, Feb 19 2019
(GAP) List([0..80], n->NumeratorRat(n/(n+7))); # Muniru A Asiru, Feb 19 2019
CROSSREFS
KEYWORD
nonn,easy,frac,mult
AUTHOR
N. J. A. Sloane, May 15 2005
STATUS
approved