login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A285115 Row sums of A285118: a(n) = Sum_{k=1..(n-1)} (C(n-1,k-1) bitwise-and C(n-1,k)), a(0) = a(1) = 0. 4
0, 0, 1, 0, 5, 8, 12, 20, 49, 64, 304, 672, 1204, 2648, 3852, 9320, 18297, 32960, 75472, 146392, 304920, 577336, 1211144, 2034072, 4801892, 7637392, 18795944, 33811680, 71566612, 139144320, 285508328, 569229920, 1069209737, 2314296064, 4167725024, 8567738280, 16894013736, 33135107200, 68279466472, 121133055024 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

Antti Karttunen, Table of n, a(n) for n = 0..256

FORMULA

a(0) = a(1) = 0, and for n > 1, a(n) = Sum_{k=1..(n-1)} C(n-1,k-1) AND C(n-1,k), where C(n,k) is a binomial coefficient & AND is bitwise-AND (A004198).

a(n) = A285113(n) - A285114(n).

a(n) = A000079(n) - A285113(n) = (A000079(n) - A285114(n))/2.

MATHEMATICA

a[n_]:=If[n<2, 0, Sum[BitAnd[Binomial[n - 1, k - 1], Binomial[n - 1, k]], {k, n - 1}]]; Table[a[n], {n, 0, 100}] (* Indranil Ghosh, Apr 16 2017 *)

PROG

(PARI) A285115(n) = if(n<2, 0, sum(k=1, (n-1), bitand(binomial(n-1, k-1), binomial(n-1, k))));

(Scheme)

(define (A285115 n) (add A285118 (A000217 n) (+ -1 (A000217 (+ 1 n)))))

(define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (+ 1 i) (+ res (intfun i)))))))

CROSSREFS

Cf. A000079, A004198, A007318, A285113, A285114, A285118.

Sequence in context: A322033 A134205 A134208 * A115072 A114644 A314419

Adjacent sequences:  A285112 A285113 A285114 * A285116 A285117 A285118

KEYWORD

nonn

AUTHOR

Antti Karttunen, Apr 16 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 14 09:11 EDT 2020. Contains 335720 sequences. (Running on oeis4.)