login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Row sums of A285118: a(n) = Sum_{k=1..(n-1)} (C(n-1,k-1) bitwise-and C(n-1,k)), a(0) = a(1) = 0.
4

%I #8 Apr 17 2017 09:02:53

%S 0,0,1,0,5,8,12,20,49,64,304,672,1204,2648,3852,9320,18297,32960,

%T 75472,146392,304920,577336,1211144,2034072,4801892,7637392,18795944,

%U 33811680,71566612,139144320,285508328,569229920,1069209737,2314296064,4167725024,8567738280,16894013736,33135107200,68279466472,121133055024

%N Row sums of A285118: a(n) = Sum_{k=1..(n-1)} (C(n-1,k-1) bitwise-and C(n-1,k)), a(0) = a(1) = 0.

%H Antti Karttunen, <a href="/A285115/b285115.txt">Table of n, a(n) for n = 0..256</a>

%F a(0) = a(1) = 0, and for n > 1, a(n) = Sum_{k=1..(n-1)} C(n-1,k-1) AND C(n-1,k), where C(n,k) is a binomial coefficient & AND is bitwise-AND (A004198).

%F a(n) = A285113(n) - A285114(n).

%F a(n) = A000079(n) - A285113(n) = (A000079(n) - A285114(n))/2.

%t a[n_]:=If[n<2, 0, Sum[BitAnd[Binomial[n - 1,k - 1], Binomial[n - 1, k]], {k, n - 1}]]; Table[a[n], {n, 0, 100}] (* _Indranil Ghosh_, Apr 16 2017 *)

%o (PARI) A285115(n) = if(n<2,0,sum(k=1,(n-1),bitand(binomial(n-1,k-1),binomial(n-1,k))));

%o (Scheme)

%o (define (A285115 n) (add A285118 (A000217 n) (+ -1 (A000217 (+ 1 n)))))

%o (define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (+ 1 i) (+ res (intfun i)))))))

%Y Cf. A000079, A004198, A007318, A285113, A285114, A285118.

%K nonn

%O 0,5

%A _Antti Karttunen_, Apr 16 2017