login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285114
Row sums of A285117: a(n) = 2 + Sum_{k=1..(n-1)} C(n-1,k-1) XOR C(n-1,k), a(0) = 1, a(1) = 2.
4
1, 2, 2, 8, 6, 16, 40, 88, 158, 384, 416, 704, 1688, 2896, 8680, 14128, 28942, 65152, 111200, 231504, 438736, 942480, 1772016, 4320464, 7173432, 18279648, 29516976, 66594368, 125302232, 258582272, 502725168, 1009023808, 2156547822, 3961342464, 8844419136, 17224261808, 34931449264, 71168739072, 138318974000, 307489703840
OFFSET
0,2
LINKS
FORMULA
a(0) = 1, a(1) = 2, for n > 1, a(n) = 2 + Sum_{k=1..(n-1)} C(n-1,k-1) XOR C(n-1,k), where C(n,k) is a binomial coefficient and XOR is bitwise-XOR (A003987).
a(n) = A285113(n) - A285115(n).
a(n) = A000079(n) - 2*A285115(n).
MATHEMATICA
a[n_]:=If[n<2, n + 1, 2 + Sum[BitXor[Binomial[n - 1, k - 1], Binomial[n - 1, k]], {k, n - 1}]]; Table[a[n], {n, 0, 100}] (* Indranil Ghosh, Apr 16 2017 *)
PROG
(PARI) A285114(n) = if(n<2, n+1, 2+sum(k=1, (n-1), bitxor(binomial(n-1, k-1), binomial(n-1, k))));
(Scheme)
(define (A285114 n) (add A285117 (A000217 n) (+ -1 (A000217 (+ 1 n)))))
(define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (+ 1 i) (+ res (intfun i)))))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 16 2017
STATUS
approved