login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353268
The least number with the same prime factorization pattern (A348717) as A329603(n) = A005940(1+(1+(3*A156552(n)))).
3
2, 2, 8, 6, 18, 2, 50, 12, 20, 8, 98, 14, 242, 18, 32, 24, 338, 6, 578, 54, 72, 50, 722, 28, 42, 98, 60, 150, 1058, 2, 1682, 48, 200, 242, 162, 70, 1922, 338, 392, 108, 2738, 8, 3362, 294, 44, 578, 3698, 56, 110, 20, 968, 726, 4418, 12, 450, 300, 1352, 722, 5618, 26, 6962, 1058, 500, 96, 882, 18, 7442, 1014, 2312
OFFSET
1,1
FORMULA
a(n) = A348717(A329603(n)).
For all n >= 1, a(2n) = A352892(2n), a(2n-1) = A329603(2n-1).
PROG
(PARI)
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
A329603(n) = A005940(2+(3*A156552(n)));
A348717(n) = { my(f=factor(n)); if(#f~>0, my(pi1=primepi(f[1, 1])); for(k=1, #f~, f[k, 1] = prime(primepi(f[k, 1])-pi1+1))); factorback(f); }; \\ From A348717
CROSSREFS
Coincides with A352892 on even n, and with A329603 on odd n.
Sequence in context: A067436 A285114 A071418 * A245582 A361790 A197820
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 09 2022
STATUS
approved