OFFSET
0,2
LINKS
Winston de Greef, Table of n, a(n) for n = 0..2497
FORMULA
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(2*k,k) * binomial(n+3*k-1,n-k).
n*a(n) = -( (n-3)*a(n-1) + (6*n-6)*a(n-2) + 10*(n-3)*a(n-3) + 5*(n-4)*a(n-4) + (n-5)*a(n-5) ) for n > 4.
a(0) = 1; a(n) = (2/n) * Sum_{k=0..n-1} (-1)^(n-1-k) * (n+k) * binomial(n+2-k,3) * a(k).
a(n) = (-1)^(n+1)*Pochhammer(n,3)*hypergeom([1-n, 1+n/3, (4+n)/3, (5+n)/3], [5/4, 7/4, 2], 3^3/2^6)/3 for n > 0. - Stefano Spezia, Jul 11 2024
MATHEMATICA
a[n_]:=(-1)^(n+1)Pochhammer[n, 3]HypergeometricPFQ[{1-n, 1+n/3, (4+n)/3, (5+n)/3}, {5/4, 7/4, 2}, 3^3/2^6]/3; Join[{1}, Array[a, 30]] (* Stefano Spezia, Jul 11 2024 *)
PROG
(PARI) my(N=40, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1+x)^4))
(PARI) a(n)=sum(k=0, n, (-1)^(n-k) * binomial(2*k, k) * binomial(n+3*k-1, n-k)) \\ Winston de Greef, Mar 24 2023
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Mar 24 2023
STATUS
approved