login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361790
Expansion of 1/sqrt(1 - 4*x/(1+x)^4).
7
1, 2, -2, -8, 6, 42, -8, -228, -90, 1210, 1238, -6116, -10864, 28574, 80932, -116248, -548010, 339678, 3455686, 173208, -20452674, -14036418, 113365140, 156407916, -580805472, -1312098918, 2659610562, 9621079540, -9902139124, -64566648122, 18521111032
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(2*k,k) * binomial(n+3*k-1,n-k).
n*a(n) = -( (n-3)*a(n-1) + (6*n-6)*a(n-2) + 10*(n-3)*a(n-3) + 5*(n-4)*a(n-4) + (n-5)*a(n-5) ) for n > 4.
a(0) = 1; a(n) = (2/n) * Sum_{k=0..n-1} (-1)^(n-1-k) * (n+k) * binomial(n+2-k,3) * a(k).
a(n) = (-1)^(n+1)*Pochhammer(n,3)*hypergeom([1-n, 1+n/3, (4+n)/3, (5+n)/3], [5/4, 7/4, 2], 3^3/2^6)/3 for n > 0. - Stefano Spezia, Jul 11 2024
MATHEMATICA
a[n_]:=(-1)^(n+1)Pochhammer[n, 3]HypergeometricPFQ[{1-n, 1+n/3, (4+n)/3, (5+n)/3}, {5/4, 7/4, 2}, 3^3/2^6]/3; Join[{1}, Array[a, 30]] (* Stefano Spezia, Jul 11 2024 *)
PROG
(PARI) my(N=40, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1+x)^4))
(PARI) a(n)=sum(k=0, n, (-1)^(n-k) * binomial(2*k, k) * binomial(n+3*k-1, n-k)) \\ Winston de Greef, Mar 24 2023
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Mar 24 2023
STATUS
approved