login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352892
Next even term in the trajectory of map x -> A341515(x), when starting from x=n; a(1) = 1. Here A341515 is the Collatz or 3x+1 map (A006370) conjugated by unary-binary-encoding (A156552).
11
1, 2, 2, 6, 2, 2, 2, 12, 4, 8, 2, 14, 2, 18, 6, 24, 2, 6, 2, 54, 10, 50, 2, 28, 4, 98, 8, 150, 2, 2, 2, 48, 14, 242, 6, 70, 2, 338, 22, 108, 2, 8, 2, 294, 12, 578, 2, 56, 4, 20, 26, 726, 2, 12, 10, 300, 34, 722, 2, 26, 2, 1058, 20, 96, 14, 18, 2, 1014, 38, 32, 2, 140, 2, 1682, 18, 1734, 6, 50, 2, 216, 16, 1922, 2, 686
OFFSET
1,2
FORMULA
a(n) = A348717(A341515(n)).
For all n >= 1, a(2n) = A353268(2n), a(2n-1) = A348717(2n-1).
a(p) = 2 for all primes p.
For n > 1, a(n) = A005940(1+A139391(A156552(n))).
PROG
(PARI)
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
A329603(n) = A005940(2+(3*A156552(n)));
A341515(n) = if(n%2, A064989(n), A329603(n));
A348717(n) = { my(f=factor(n)); if(#f~>0, my(pi1=primepi(f[1, 1])); for(k=1, #f~, f[k, 1] = prime(primepi(f[k, 1])-pi1+1))); factorback(f); }; \\ From A348717
(PARI) A352892(n) = if(1==n, n, n = A341515(n); while(n%2, n = A341515(n)); (n)); \\ A slower alternative.
CROSSREFS
Coincides with A353268 on even n, and with A348717 on odd n.
Sequence in context: A077198 A046110 A296091 * A126889 A205030 A278250
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 08 2022
STATUS
approved