login
A077198
a(n) = lambda(sigma(n)), where lambda(n) is the Carmichael lambda function, which gives the smallest integer m such that k^m = 1 mod n for all integers k relatively prime to n.
1
1, 2, 2, 6, 2, 2, 2, 4, 12, 6, 2, 6, 6, 2, 2, 30, 6, 12, 4, 6, 8, 6, 2, 4, 30, 6, 4, 6, 4, 6, 8, 6, 4, 18, 4, 12, 18, 4, 6, 12, 6, 8, 10, 6, 12, 6, 4, 30, 18, 30, 6, 42, 18, 4, 6, 4, 4, 12, 4, 6, 30, 8, 12, 126, 6, 12, 16, 6, 8, 12, 6, 12, 36, 18, 30, 12, 8, 6, 4, 30, 110, 6, 6, 24, 18, 10, 4
OFFSET
1,2
FORMULA
a(n) = A002322(A000203(n)). - Antti Karttunen, Nov 18 2017
MATHEMATICA
Table[CarmichaelLambda[DivisorSigma[1, n]], {n, 1, 100}]
PROG
(PARI) A077198(n) = lcm(znstar(sigma(n))[2]); \\ Antti Karttunen, Nov 18 2017
CROSSREFS
Cf. also A062401, A290088.
Sequence in context: A077894 A374031 A053214 * A046110 A296091 A352892
KEYWORD
nonn
AUTHOR
Joseph L. Pe, Nov 30 2002
STATUS
approved