login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077199
Smallest k such that both k and k+n are squarefree.
0
2, 3, 2, 2, 2, 5, 3, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 3, 2, 2, 2, 7, 3, 2, 5, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 5, 3, 2, 2, 5, 6, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 3, 2, 2, 5, 3, 2, 2, 2, 3, 2, 2, 2, 3
OFFSET
1,1
COMMENTS
If a(n) = 3 or 7 then a(n+1) = 2 or 6 respectively.
Conjecture: every term is < 10, i.e. for every n at least one of the numbers n+2, n+3, n+5, n+6 or n+7 is squarefree.
The conjecture is false. Here are 9 counterexamples, each of which is less than 10000: 1857, 2522, 3570, 4470, 6169, 6645, 7981, 9553, 9745. There are 16 counterexamples within the first 10000 squarefree numbers. - Harvey P. Dale, May 24 2014
EXAMPLE
a(12) = 2 as 2+12 = 14 is squarefree.
MATHEMATICA
With[{sqfree=Select[Range[2, 20], SquareFreeQ]}, Flatten[ Table[ Select[ sqfree+ n, SquareFreeQ, 1]-n, {n, 70}]]] (* Harvey P. Dale, May 21 2014 *)
PROG
(PARI) a(n) = {k = 2; while(!issquarefree(k) || !issquarefree(k+n), k++); k; } \\ Michel Marcus, May 24 2014
CROSSREFS
Sequence in context: A286529 A306225 A373249 * A145390 A270026 A340703
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Nov 01 2002
EXTENSIONS
Corrected and extended by Harvey P. Dale, May 21 2014
STATUS
approved