login
A139391
Next odd term in Collatz trajectory with starting value n.
28
1, 1, 5, 1, 1, 3, 11, 1, 7, 5, 17, 3, 5, 7, 23, 1, 13, 9, 29, 5, 1, 11, 35, 3, 19, 13, 41, 7, 11, 15, 47, 1, 25, 17, 53, 9, 7, 19, 59, 5, 31, 21, 65, 11, 17, 23, 71, 3, 37, 25, 77, 13, 5, 27, 83, 7, 43, 29, 89, 15, 23, 31, 95, 1, 49, 33, 101, 17, 13, 35, 107, 9, 55, 37, 113, 19, 29
OFFSET
1,3
LINKS
Friedrich L. Bauer, Der (ungerade) Collatz-Baum, Informatik Spektrum 31 (Springer, April 2008).
Eric Weisstein's World of Mathematics, Collatz Problem.
Wikipedia, Collatz conjecture.
FORMULA
a(n) = A006370(n) if A006370(n) is odd, otherwise a(A006370(n)).
a(n) = A006370(n) iff n mod 4 = 2;
a(A016825(n)) = A006370(A016825(n));
a(n) = A000265(A006370(n)).
a(A160967(n)) = 1. - Reinhard Zumkeller, May 31 2009
For odd n, a(n) = a(2*A350091((n-1)/2)+1). - Ruud H.G. van Tol, Dec 17 2021
Sum_{k=1..n} a(k) ~ n^2 / 3. - Amiram Eldar, Aug 26 2024
MATHEMATICA
a[n_]:=Select[NestWhileList[If[EvenQ[#], #/2, 3#+1] &, n, #>1 &], OddQ]; Prepend[Table[If[EvenQ[n], a[n][[1]], a[n][[2]]], {n, 2, 77}], 1] (* Jayanta Basu, May 27 2013 *)
PROG
(Python) # first formula
def A006370(n): return 3*n+1 if n%2 else n//2
def a(n): return x if (x := A006370(n))%2 else a(x)
print([a(n) for n in range(1, 78)]) # Michael S. Branicky, Dec 15 2021
(Python) # fourth formula, uses A006370 above
def A000265(n):
while n%2 == 0: n //= 2
return n
def a(n): return A000265(A006370(n))
print([a(n) for n in range(1, 78)]) # Michael S. Branicky, Dec 15 2021
(PARI) a(n) = my(x = if(n%2, 3*n+1, n/2)); x/2^valuation(x, 2); \\ Michel Marcus, Feb 27 2022
CROSSREFS
Cf. A075677 (odd bisection).
Sequence in context: A179261 A154567 A260210 * A196612 A110635 A179773
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Apr 17 2008
STATUS
approved