OFFSET
1,3
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Friedrich L. Bauer, Der (ungerade) Collatz-Baum, Informatik Spektrum 31 (Springer, April 2008).
Eric Weisstein's World of Mathematics, Collatz Problem.
Wikipedia, Collatz conjecture.
FORMULA
a(n) = A006370(n) iff n mod 4 = 2;
a(A160967(n)) = 1. - Reinhard Zumkeller, May 31 2009
For odd n, a(n) = a(2*A350091((n-1)/2)+1). - Ruud H.G. van Tol, Dec 17 2021
Sum_{k=1..n} a(k) ~ n^2 / 3. - Amiram Eldar, Aug 26 2024
MATHEMATICA
a[n_]:=Select[NestWhileList[If[EvenQ[#], #/2, 3#+1] &, n, #>1 &], OddQ]; Prepend[Table[If[EvenQ[n], a[n][[1]], a[n][[2]]], {n, 2, 77}], 1] (* Jayanta Basu, May 27 2013 *)
PROG
(Python) # first formula
def A006370(n): return 3*n+1 if n%2 else n//2
def a(n): return x if (x := A006370(n))%2 else a(x)
print([a(n) for n in range(1, 78)]) # Michael S. Branicky, Dec 15 2021
(Python) # fourth formula, uses A006370 above
def A000265(n):
while n%2 == 0: n //= 2
return n
print([a(n) for n in range(1, 78)]) # Michael S. Branicky, Dec 15 2021
(PARI) a(n) = my(x = if(n%2, 3*n+1, n/2)); x/2^valuation(x, 2); \\ Michel Marcus, Feb 27 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Apr 17 2008
STATUS
approved