login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352897
Maximum value of bigomega (A001222) computed for all the terms x (including the starting term x=n), when map x -> A352892(x) is iterated down to the first x <= 2, or -1 if such number is never reached. Here A352892 is the next odd term in the Collatz or 3x+1 map (A139391) conjugated by unary-binary-encoding (A156552).
6
0, 1, 1, 2, 1, 2, 1, 3, 2, 3, 1, 3, 1, 3, 2, 4, 1, 3, 1, 4, 3, 4, 1, 4, 2, 3, 3, 4, 1, 3, 1, 8, 3, 8, 2, 8, 1, 8, 4, 5, 1, 3, 1, 4, 3, 6, 1, 8, 2, 4, 3, 4, 1, 4, 3, 8, 8, 5, 1, 4, 1, 8, 4, 8, 3, 3, 1, 8, 8, 8, 1, 8, 1, 8, 3, 8, 2, 4, 1, 6, 4, 7, 1, 4, 4, 7, 6, 5, 1, 4, 3, 6, 5, 8, 3, 8, 1, 3, 4, 4, 1, 3, 1, 8, 3
OFFSET
1,4
COMMENTS
Equally, maximum value of bigomega (A001222) computed for all the terms x (including the starting term x=n), when map x -> A341515(x) is iterated starting from x=n.
FORMULA
a(n) = max(A001222(n), A352896(n)).
For n > 1, a(n) = A333860(A156552(n)).
PROG
(PARI) A352897(n) = { my(m=bigomega(n)); while(n>2, m = max(m, bigomega(n)); n = A352892(n)); (m); }; \\ Uses the code from A352892.
(PARI) A352897(n) = { my(m=bigomega(n)); while(n>2, m = max(m, bigomega(n)); n = A341515(n)); (m); }; \\ Slightly slower.
(PARI)
A139391(n) = my(x = if(n%2, 3*n+1, n/2)); x/2^valuation(x, 2); \\ From A139391
A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
A333860(n) = { my(mw=1); while(n>1, mw = max(hammingweight(n), mw); n = A139391(n)); (mw); };
A352897(n) = if(1==n, 0, A333860(A156552(n)));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 08 2022
STATUS
approved