login
A060682
Number of distinct differences between consecutive divisors of n (ordered by size).
15
1, 1, 2, 1, 2, 1, 3, 2, 3, 1, 3, 1, 3, 2, 4, 1, 3, 1, 4, 3, 3, 1, 4, 2, 3, 3, 5, 1, 5, 1, 5, 3, 3, 3, 5, 1, 3, 3, 5, 1, 4, 1, 5, 4, 3, 1, 5, 2, 5, 3, 5, 1, 4, 3, 6, 3, 3, 1, 7, 1, 3, 4, 6, 3, 5, 1, 5, 3, 6, 1, 6, 1, 3, 3, 5, 3, 5, 1, 7, 4, 3, 1, 6, 3, 3, 3, 7, 1, 7, 2, 5, 3, 3, 3, 6, 1, 5, 4, 6, 1, 5, 1, 7, 5, 3
OFFSET
2,3
COMMENTS
Number of all differences for n is d(n)-1 = A000005(n)-1. Increments are not necessarily different, so a(n)<=d(n)-1.
LINKS
A. Balog, P. Erdős and G. Tenenbaum, On Arithmetic Functions Involving Consecutive Divisors, In: Analytical Number Theory, pp. 77-90, Birkhäuser, Basel, 1990.
Jason Earls, Smarandache iterations of the first kind on functions involving divisors and prime factors, in Smarandache Notions Journal (2004), Vol. 14.1, page 264.
EXAMPLE
For n=70, divisors={1,2,5,7,10,14,35,70}; differences={1,3,2,3,4,21,35}; a(70) = number of distinct differences = 6.
MATHEMATICA
a[n_ ] := Length[Union[Drop[d=Divisors[n], 1]-Drop[d, -1]]]
PROG
(Haskell)
import Data.List (nub, genericLength)
a060682 = genericLength . nub . a193829_row
-- Reinhard Zumkeller, Jun 25 2015
(PARI) a(n) = my(d=divisors(n)); #vecsort(vector(#d-1, k, d[k+1] - d[k]), , 8); \\ Michel Marcus, Jul 04 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Apr 19 2001
EXTENSIONS
Edited by Dean Hickerson, Jan 22 2002
STATUS
approved