OFFSET
2,3
COMMENTS
Number of all differences for n is d(n)-1 = A000005(n)-1. Increments are not necessarily different, so a(n)<=d(n)-1.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 2..10000
A. Balog, P. Erdős and G. Tenenbaum, On Arithmetic Functions Involving Consecutive Divisors, In: Analytical Number Theory, pp. 77-90, Birkhäuser, Basel, 1990.
Jason Earls, Smarandache iterations of the first kind on functions involving divisors and prime factors, in Smarandache Notions Journal (2004), Vol. 14.1, page 264.
EXAMPLE
For n=70, divisors={1,2,5,7,10,14,35,70}; differences={1,3,2,3,4,21,35}; a(70) = number of distinct differences = 6.
MATHEMATICA
a[n_ ] := Length[Union[Drop[d=Divisors[n], 1]-Drop[d, -1]]]
PROG
(Haskell)
import Data.List (nub, genericLength)
a060682 = genericLength . nub . a193829_row
-- Reinhard Zumkeller, Jun 25 2015
(PARI) a(n) = my(d=divisors(n)); #vecsort(vector(#d-1, k, d[k+1] - d[k]), , 8); \\ Michel Marcus, Jul 04 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Apr 19 2001
EXTENSIONS
Edited by Dean Hickerson, Jan 22 2002
STATUS
approved