The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A173442 Number of divisors d of number n such that sigma(d) does not divide n. 2
 0, 1, 1, 2, 1, 2, 1, 3, 2, 3, 1, 2, 1, 3, 3, 4, 1, 4, 1, 5, 3, 3, 1, 4, 2, 3, 3, 4, 1, 5, 1, 5, 3, 3, 3, 5, 1, 3, 3, 7, 1, 6, 1, 5, 5, 3, 1, 6, 2, 5, 3, 5, 1, 6, 3, 4, 3, 3, 1, 7, 1, 3, 5, 6, 3, 6, 1, 5, 3, 7, 1, 8, 1, 3, 5, 5, 3, 6, 1, 9, 4, 3, 1, 6, 3, 3, 3, 7, 1, 8, 3, 5, 3, 3, 3, 8, 1, 5, 5, 8 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Sigma(n) = A000203(n). a(n) = A000005(n) - A173441(n). a(n) >= 1 for n >= 2, with equality if and only if n is prime. - Robert Israel, Oct 10 2017 LINKS Robert Israel, Table of n, a(n) for n = 1..10000 EXAMPLE For n = 12, a(12) = 2. We see that the divisors of 12 are 1, 2, 3, 4, 6, 12. The corresponding sigma(d) are 1, 3, 4, 7, 12, 28. The sigma(d) which do not divide n for 2 divisors d are 4 and 12. MAPLE f:= n -> nops(select(t -> n mod numtheory:-sigma(t) <> 0, numtheory:-divisors(n))): map(f, [\$1..100]); # Robert Israel, Oct 10 2017 MATHEMATICA Table[Length[Select[Divisors[n], Not[Divisible[n, DivisorSigma[1, #]]], &]], {n, 100}] (* Alonso del Arte, Oct 10 2017 *) PROG (PARI) a(n) = sumdiv(n, d, (n % sigma(d)) != 0); \\ Michel Marcus, Oct 11 2017 CROSSREFS Cf. A000005, A000203, A173441. Sequence in context: A261350 A259177 A304036 * A112309 A160006 A060682 Adjacent sequences: A173439 A173440 A173441 * A173443 A173444 A173445 KEYWORD nonn AUTHOR Jaroslav Krizek, Feb 18 2010 EXTENSIONS More terms from Robert Israel, Oct 10 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 19 20:58 EDT 2024. Contains 374436 sequences. (Running on oeis4.)